@incollection{AkimbekovDigelRazzaque2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Razzaque, Mohammed S.}, title = {Role of vitamins in maintaining structure and function of intestinal microbiome}, series = {Comprehensive Gut Microbiota}, booktitle = {Comprehensive Gut Microbiota}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-822036-8}, doi = {10.1016/B978-0-12-819265-8.00043-7}, pages = {320 -- 334}, year = {2022}, abstract = {The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota.}, language = {en} } @article{WerfelGuenthnerHapfelmeieretal.2022, author = {Werfel, Stanislas and G{\"u}nthner, Roman and Hapfelmeier, Alexander and Hanssen, Henner and Kotliar, Konstantin and Heemann, Uwe and Schmaderer, Christoph}, title = {Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning}, series = {Cardiovascular Research}, volume = {118}, journal = {Cardiovascular Research}, number = {2}, editor = {Guzik, Tomasz J.}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvab040}, pages = {612 -- 621}, year = {2022}, abstract = {Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.}, language = {en} } @inproceedings{EggertDyong2022, author = {Eggert, Mathias and Dyong, Julian}, title = {Applying process mining in small and medium sized IT enterprises - challenges and guidelines}, series = {Business Process Management, 20th International Conference, BPM 2022, Proceedings}, booktitle = {Business Process Management, 20th International Conference, BPM 2022, Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-16103-2}, doi = {10.1007/978-3-031-16103-2_11}, pages = {125 -- 142}, year = {2022}, abstract = {Process mining gets more and more attention even outside large enterprises and can be a major benefit for small and medium sized enterprises (SMEs) to gain competitive advantages. Applying process mining is challenging, particularly for SMEs because they have less resources and process maturity. So far, IS researchers analyzed process mining challenges with a focus on larger companies. This paper investigates the application of process mining by means of a case study and sheds light into the particular challenges of an IT SME. The results reveal 13 SME process mining challenges and seven guidelines to address them. In this way, the paper contributes to the understanding of process mining application in SME and shows similarities and differences to larger companies.}, language = {en} } @inproceedings{WeissHeslenfeldSaeweetal.2022, author = {Weiss, Christian and Heslenfeld, Jonas and Saewe, Jasmin Kathrin and Bremen, Sebastian and H{\"a}fner, Constantin Leon}, title = {Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF)}, series = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, volume = {111}, booktitle = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.08.102}, pages = {115 -- 120}, year = {2022}, abstract = {In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced.}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @article{MonakhovaDiehl2022, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Nuclear magnetic resonance spectroscopy as an elegant tool for a complete quality control of crude heparin material}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {219}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114915}, publisher = {Elsevier}, address = {New York, NY}, issn = {0731-7085}, doi = {10.1016/j.jpba.2022.114915}, year = {2022}, abstract = {Nuclear magnetic resonance (NMR) spectrometric methods for the quantitative analysis of pure heparin in crude heparin is proposed. For quantification, a two-step routine was developed using a USP heparin reference sample for calibration and benzoic acid as an internal standard. The method was successfully validated for its accuracy, reproducibility, and precision. The methodology was used to analyze 20 authentic porcine heparinoid samples having heparin content between 4.25 w/w \% and 64.4 w/w \%. The characterization of crude heparin products was further extended to a simultaneous analysis of these common ions: sodium, calcium, acetate and chloride. A significant, linear dependence was found between anticoagulant activity and assayed heparin content for thirteen heparinoids samples, for which reference data were available. A Diffused-ordered NMR experiment (DOSY) can be used for qualitative analysis of specific glycosaminoglycans (GAGs) in heparinoid matrices and, potentially, for quantitative prediction of molecular weight of GAGs. NMR spectrometry therefore represents a unique analytical method suitable for the simultaneous quantitative control of organic and inorganic composition of crude heparin samples (especially heparin content) as well as an estimation of other physical and quality parameters (molecular weight, animal origin and activity).}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @article{UysalCreutzFiratetal.2022, author = {Uysal, Karya and Creutz, Till and Firat, Ipek Seda and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, pages = {2213}, year = {2022}, abstract = {Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3-4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.}, language = {en} } @article{AbbasBalcBremenetal.2022, author = {Abbas, Karim and Balc, Nicolae and Bremen, Sebastian and Skupin, Marco}, title = {Crystallization and aging behavior of polyetheretherketone PEEK within rapid tooling and rubber molding}, series = {Journal of Manufacturing and Materials Processing}, volume = {6}, journal = {Journal of Manufacturing and Materials Processing}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp6050093}, pages = {1 -- 12}, year = {2022}, abstract = {In times of short product life cycles, additive manufacturing and rapid tooling are important methods to make tool development and manufacturing more efficient. High-performance polymers are the key to mold production for prototypes and small series. However, the high temperatures during vulcanization injection molding cause thermal aging and can impair service life. The extent to which the thermal stress over the entire process chain stresses the material and whether it leads to irreversible material aging is evaluated. To this end, a mold made of PEEK is fabricated using fused filament fabrication and examined for its potential application. The mold is heated to 200 ◦C, filled with rubber, and cured. A differential scanning calorimetry analysis of each process step illustrates the crystallization behavior and first indicates the material resistance. It shows distinct cold crystallization regions at a build chamber temperature of 90 ◦C. At an ambient temperature above Tg, crystallization of 30\% is achieved, and cold crystallization no longer occurs. Additional tensile tests show a decrease in tensile strength after ten days of thermal aging. The steady decrease in recrystallization temperature indicates degradation of the additives. However, the tensile tests reveal steady embrittlement of the material due to increasing crosslinking.}, language = {en} } @inproceedings{BuesgenKloeserKohletal.2022, author = {B{\"u}sgen, Andr{\´e} and Kl{\"o}ser, Lars and Kohl, Philipp and Schmidts, Oliver and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Exploratory analysis of chat-based black market profiles with natural language processing}, series = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, booktitle = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, isbn = {978-989-758-583-8}, issn = {2184-285X}, doi = {10.5220/0011271400003269}, pages = {83 -- 94}, year = {2022}, abstract = {Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods.}, language = {en} } @inproceedings{OstkottePetersHueningetal.2022, author = {Ostkotte, Sebastian and Peters, Constantin and H{\"u}ning, Felix and Bragard, Michael}, title = {Design, implementation and verification of an rotational incremental position encoder based on the magnetic Wiegand effect}, series = {2022 ELEKTRO (ELEKTRO)}, booktitle = {2022 ELEKTRO (ELEKTRO)}, publisher = {IEEE}, isbn = {978-1-6654-6726-1}, issn = {2691-0616}, doi = {10.1109/ELEKTRO53996.2022.9803477}, pages = {6 Seiten}, year = {2022}, abstract = {This paper covers the use of the magnetic Wiegand effect to design an innovative incremental encoder. First, a theoretical design is given, followed by an estimation of the achievable accuracy and an optimization in open-loop operation. Finally, a successful experimental verification is presented. For this purpose, a permanent magnet synchronous machine is controlled in a field-oriented manner, using the angle information of the prototype.}, language = {en} } @inproceedings{ZaehlBiewendtWolfetal.2022, author = {Z{\"a}hl, Philipp M. and Biewendt, Marcel and Wolf, Martin and Eggert, Mathias}, title = {Requirements for competence developing games in the environment of SE Competence Development}, series = {AKWI-Tagungsband zur 35. AKWI-Jahrestagung}, booktitle = {AKWI-Tagungsband zur 35. AKWI-Jahrestagung}, publisher = {GITO}, address = {Berlin}, isbn = {978-3-95545-409-8}, doi = {10.30844/AKWI_2022_05}, pages = {73 -- 88}, year = {2022}, abstract = {Many of today's factors make software development more and more complex, such as time pressure, new technologies, IT security risks, et cetera. Thus, a good preparation of current as well as future software developers in terms of a good software engineering education becomes progressively important. As current research shows, Competence Developing Games (CDGs) and Serious Games can offer a potential solution. This paper identifies the necessary requirements for CDGs to be conducive in principle, but especially in software engineering (SE) education. For this purpose, the current state of research was summarized in the context of a literature review. Afterwards, some of the identified requirements as well as some additional requirements were evaluated by a survey in terms of subjective relevance.}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @inproceedings{EggertKriska2022, author = {Eggert, Mathias and Kriska, Melina}, title = {Gamification for software development processes - relevant affordances and design principles}, series = {Proceedings of the 55th Hawaii International Conference on System Sciences}, booktitle = {Proceedings of the 55th Hawaii International Conference on System Sciences}, publisher = {HICSS Publishing}, address = {Honolulu}, isbn = {978-0-9981331-5-7}, doi = {10.24251/HICSS.2022.200}, pages = {1614 -- 1623}, year = {2022}, abstract = {A Gamified Information System (GIS) implements game concepts and elements, such as affordances and game design principles to motivate people. Based on the idea to develop a GIS to increase the motivation of software developers to perform software quality tasks, the research work at hand aims at investigating relevant requirements from that target group. Therefore, 14 interviews with software development experts are conducted and analyzed. According to the results, software developers prefer the affordances points, narrative storytelling in a multiplayer and a round-based setting. Furthermore, six design principles for the development of a GIS are derived.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @inproceedings{BlaneckBornheimGriegeretal.2022, author = {Blaneck, Patrick Gustav and Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {Automatic readability assessment of german sentences with transformer ensembles}, series = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, booktitle = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, publisher = {Association for Computational Linguistics}, address = {Potsdam}, doi = {10.48550/arXiv.2209.04299}, pages = {57 -- 62}, year = {2022}, abstract = {Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0:435.}, language = {en} } @article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{KotliarOrtnerConradietal.2022, author = {Kotliar, Konstantin and Ortner, Marion and Conradi, Anna and Hacker, Patricia and Hauser, Christine and G{\"u}nthner, Roman and Moser, Michaela and Muggenthaler, Claudia and Diehl-Schmid, Janine and Priller, Josef and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance}, series = {Neurobiology of Aging}, volume = {120}, journal = {Neurobiology of Aging}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0197-4580}, doi = {10.1016/j.neurobiolaging.2022.08.012}, pages = {117 -- 127}, year = {2022}, abstract = {Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis.}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} } @article{MolinnusJanusFangetal.2022, author = {Molinnus, Denise and Janus, Kevin Alexander and Fang, Anyelina C. and Drinic, Aleksander and Achtsnicht, Stefan and K{\"o}pf, Marius and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications}, series = {Physica status solidi (a)}, volume = {219}, journal = {Physica status solidi (a)}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202200100}, pages = {1 -- 9}, year = {2022}, abstract = {This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications.}, language = {en} } @article{SchuellerRuhlDinstuehlerSengeretal.2022, author = {Sch{\"u}ller-Ruhl, Aaron and Dinst{\"u}hler, Leonard and Senger, Thorsten and Bergfeld, Stefan and Ingenhag, Christian and Fleischhaker, Robert}, title = {Direct fabrication of arbitrary phase masks in optical glass via ultra-short pulsed laser writing of refractive index modifications}, series = {Applied Physics B}, volume = {128}, journal = {Applied Physics B}, number = {Article number: 208}, editor = {Mackenzie, Jacob}, publisher = {Springer}, address = {Berlin}, issn = {1432-0649 (Online)}, doi = {10.1007/s00340-022-07928-2}, pages = {1 -- 11}, year = {2022}, abstract = {We study the possibility to fabricate an arbitrary phase mask in a one-step laser-writing process inside the volume of an optical glass substrate. We derive the phase mask from a Gerchberg-Saxton-type algorithm as an array and create each individual phase shift using a refractive index modification of variable axial length. We realize the variable axial length by superimposing refractive index modifications induced by an ultra-short pulsed laser at different focusing depth. Each single modification is created by applying 1000 pulses with 15 μJ pulse energy at 100 kHz to a fixed spot of 25 μm diameter and the focus is then shifted axially in steps of 10 μm. With several proof-of-principle examples, we show the feasibility of our method. In particular, we identify the induced refractive index change to about a value of Δn=1.5⋅10-3. We also determine our current limitations by calculating the overlap in the form of a scalar product and we discuss possible future improvements.}, language = {en} } @inproceedings{AmirBauckhageChircuetal.2022, author = {Amir, Malik and Bauckhage, Christian and Chircu, Alina and Czarnecki, Christian and Knopf, Christian and Piatkowski, Nico and Sultanow, Eldar}, title = {What can we expect from quantum (digital) twins?}, series = {Wirtschaftsinformatik 2022 Proceedings}, booktitle = {Wirtschaftsinformatik 2022 Proceedings}, publisher = {AIS Electronic Library (AISeL)}, pages = {1 -- 14}, year = {2022}, abstract = {Digital twins enable the modeling and simulation of real-world entities (objects, processes or systems), resulting in improvements in the associated value chains. The emerging field of quantum computing holds tremendous promise forevolving this virtualization towards Quantum (Digital) Twins (QDT) and ultimately Quantum Twins (QT). The quantum (digital) twin concept is not a contradiction in terms - but instead describes a hybrid approach that can be implemented using the technologies available today by combining classicalcomputing and digital twin concepts with quantum processing. This paperpresents the status quo of research and practice on quantum (digital) twins. It alsodiscuses their potential to create competitive advantage through real-timesimulation of highly complex, interconnected entities that helps companies better address changes in their environment and differentiate their products andservices.}, language = {en} } @article{PhilippEfthimiouPaganoetal.2022, author = {Philipp, Mohr and Efthimiou, Nikos and Pagano, Fiammetta and Kratochwil, Nicolaus and Pizzichemi, Marco and Tsoumpas, Charalampos and Auffray, Etiennette and Ziemons, Karl}, title = {Image reconstruction analysis for positron emission tomography with heterostructured scintillators}, series = {IEEE Transactions on Radiation and Plasma Medical Sciences}, volume = {7}, journal = {IEEE Transactions on Radiation and Plasma Medical Sciences}, number = {1}, publisher = {IEEE}, address = {New York, NY}, issn = {2469-7311}, doi = {10.1109/TRPMS.2022.3208615}, pages = {41 -- 51}, year = {2022}, abstract = {The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0×3.1×15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32\% for 100 μm thick plastic layers and 52\% for 50 μm, the CTR distribution improved to 204±49 ps and 220±41 ps respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On a NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast to noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.}, language = {en} } @incollection{HinkeVervierBrauneretal.2022, author = {Hinke, Christian and Vervier, Luisa and Brauner, Philipp and Schneider, Sebastian and Steuer-Dankert, Linda and Ziefle, Martina and Leicht-Scholten, Carmen}, title = {Capability configuration in next generation manufacturing}, series = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, booktitle = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07733-3}, doi = {10.1007/978-3-031-07734-0_6}, pages = {95 -- 106}, year = {2022}, abstract = {Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today's world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students.}, language = {en} } @incollection{SteuerDankertLeichtScholten2022, author = {Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {Perceiving diversity : an explorative approach in a complex research organization.}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221010}, pages = {365 -- 392}, year = {2022}, abstract = {Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; L{\´o}pez, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff.}, language = {en} } @incollection{StriebingMuellerSchraudneretal.2022, author = {Striebing, Clemens and M{\"u}ller, J{\"o}rg and Schraudner, Martina and Gewinner, Irina Valerie and Guerrero Morales, Patricia and Hochfeld, Katharina and Hoffman, Shekinah and Kmec, Julie A. and Nguyen, Huu Minh and Schneider, Jannick and Sheridan, Jennifer and Steuer-Dankert, Linda and Trimble O'Connor, Lindsey and Vandevelde-Rougale, Agn{\`e}s}, title = {Promoting diversity and combatting discrimination in research organizations: a practitioner's guide}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221012}, pages = {421 -- 442}, year = {2022}, abstract = {The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on "Diversity and Discrimination in Research Organizations."}, language = {en} } @inproceedings{MertensBraunerBaieretal.2022, author = {Mertens, Alexander and Brauner, Philipp and Baier, Ralph and Brillowski, Florian and Dammers, Hannah and van Dyck, Marc and Kong, Iris and K{\"o}nigs, Peter and Kordtomeikel, Frauke and Liehner, Gian Luca and P{\"u}tz, Sebastian and Rodermann, Niklas and Schaar, Anne Kathrin and Steuer-Dankert, Linda and Vervier, Luisa and Wlecke, Shari and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows}, series = {Modellierung 2022 Satellite Events}, booktitle = {Modellierung 2022 Satellite Events}, editor = {Michael, Judith and Pfeiffer, J{\´e}r{\^o}me and Wortmann, Andreas}, publisher = {GI Gesellschaft f{\"u}r Informatik}, address = {Bonn}, doi = {10.18420/modellierung2022ws-018}, pages = {147 -- 149}, year = {2022}, abstract = {The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production.}, language = {en} } @incollection{BraunerVervierBrillowskietal.2022, author = {Brauner, Philipp and Vervier, Luisa and Brillowski, Florian and Dammers, Hannah and Steuer-Dankert, Linda and Schneider, Sebastian and Baier, Ralph and Ziefle, Martina and Gries, Thomas and Leicht-Scholten, Carmen and Mertens, Alexander and Nagel, Saskia K.}, title = {Organization Routines in Next Generation Manufacturing}, series = {Forecasting Next Generation Manufacturing}, booktitle = {Forecasting Next Generation Manufacturing}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07734-0}, doi = {10.1007/978-3-031-07734-0_5}, pages = {75 -- 94}, year = {2022}, abstract = {Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030.}, language = {en} } @article{PourshahidiEngelmannOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Engelmann, Ulrich M. and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169969}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169969}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as "colourization") of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples' total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization.}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @inproceedings{AllalBannisterBuismanetal.2022, author = {Allal, D. and Bannister, R. and Buisman, K. and Capriglione, D. and Di Capua, G. and Garc{\´i}a-Patr{\´o}n, M. and Gatzweiler, Thomas and Gellersen, F. and Harzheim, Thomas and Heuermann, Holger and Hoffmann, J. and Izbrodin, A. and Kuhlmann, K. and Lahbacha, K. and Maffucci, A. and Miele, G. and Mubarak, F. and Salter, M. and Pham, T.D. and Sayegh, A. and Singh, D. and Stein, F. and Zeier, M.}, title = {RF measurements for future communication applications: an overview}, series = {2022 IEEE International Symposium on Measurements \& Networking (M\&N)}, booktitle = {2022 IEEE International Symposium on Measurements \& Networking (M\&N)}, publisher = {IEEE}, isbn = {978-1-6654-8362-9}, issn = {2639-5061}, doi = {10.1109/MN55117.2022.9887740}, pages = {1 -- 6}, year = {2022}, abstract = {In this paper research activities developed within the FutureCom project are presented. The project, funded by the European Metrology Programme for Innovation and Research (EMPIR), aims at evaluating and characterizing: (i) active devices, (ii) signal- and power integrity of field programmable gate array (FPGA) circuits, (iii) operational performance of electronic circuits in real-world and harsh environments (e.g. below and above ambient temperatures and at different levels of humidity), (iv) passive inter-modulation (PIM) in communication systems considering different values of temperature and humidity corresponding to the typical operating conditions that we can experience in real-world scenarios. An overview of the FutureCom project is provided here, then the research activities are described.}, language = {en} } @article{LindnerBurgerRutledgeetal.2022, author = {Lindner, Simon and Burger, Ren{\´e} and Rutledge, Douglas N. and Do, Xuan Tung and Rumpf, Jessica and Diehl, Bernd W. K. and Schulze, Margit and Monakhova, Yulia}, title = {Is the calibration transfer of multivariate calibration models between high- and low-field NMR instruments possible? A case study of lignin molecular weight}, series = {Analytical chemistry}, volume = {94}, journal = {Analytical chemistry}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, isbn = {1520-6882}, doi = {10.1021/acs.analchem.1c05125}, pages = {3997 -- 4004}, year = {2022}, abstract = {Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.}, language = {en} } @article{MonakhovaDiehl2022, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Multinuclear NMR screening of pharmaceuticals using standardization by 2H integral of a deuterated solvent}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {209}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114530}, publisher = {Elsevier}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2021.114530}, year = {2022}, abstract = {NMR standardization approach that uses the 2H integral of deuterated solvent for quantitative multinuclear analysis of pharmaceuticals is described. As a proof of principle, the existing NMR procedure for the analysis of heparin products according to US Pharmacopeia monograph is extended to the determination of Na+ and Cl- content in this matrix. Quantification is performed based on the ratio of a 23Na (35Cl) NMR integral and 2H NMR signal of deuterated solvent, D2O, acquired using the specific spectrometer hardware. As an alternative, the possibility of 133Cs standardization using the addition of Cs2CO3 stock solution is shown. Validation characteristics (linearity, repeatability, sensitivity) are evaluated. A holistic NMR profiling of heparin products can now also be used for the quantitative determination of inorganic compounds in a single analytical run using a single sample. In general, the new standardization methodology provides an appealing alternative for the NMR screening of inorganic and organic components in pharmaceutical products.}, language = {en} } @article{BurgerLindnerRumpfetal.2022, author = {Burger, Ren{\´e} and Lindner, Simon and Rumpf, Jessica and Do, Xuan Tung and Diehl, Bernd W.K. and Rehahn, Matthias and Monakhova, Yulia and Schulze, Margit}, title = {Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {212}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114649}, publisher = {Elsevier}, address = {New York, NY}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2022.114649}, year = {2022}, abstract = {Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin's molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6\% and 12.9\% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin's molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.}, language = {en} } @article{MonakhovaSobolevaFedotovaetal.2022, author = {Monakhova, Yulia and Soboleva, Polina M. and Fedotova, Elena S. and Musina, Kristina T. and Burmistrova, Natalia A.}, title = {Quantum chemical calculations of IR spectra of heparin disaccharide subunits}, series = {Computational and Theoretical Chemistry}, volume = {1217}, journal = {Computational and Theoretical Chemistry}, number = {Article number: 113891}, publisher = {Elsevier}, address = {New York, NY}, isbn = {2210-271X}, doi = {10.1016/j.comptc.2022.113891}, year = {2022}, abstract = {Heparin is a natural polysaccharide, which plays essential role in many biological processes. Alterations in building blocks can modify biological roles of commercial heparin products, due to significant changes in the conformation of the polymer chain. The variability structure of heparin leads to difficulty in quality control using different analytical methods, including infrared (IR) spectroscopy. In this paper molecular modelling of heparin disaccharide subunits was performed using quantum chemistry. The structural and spectral parameters of these disaccharides have been calculated using RHF/6-311G. In addition, over-sulphated chondroitin sulphate disaccharide was studied as one of the most widespread contaminants of heparin. Calculated IR spectra were analyzed with respect to specific structure parameters. IR spectroscopic fingerprint was found to be sensitive to substitution pattern of disaccharide subunits. Vibrational assignments of calculated spectra were correlated with experimental IR spectral bands of native heparin. Chemometrics was used to perform multivariate analysis of simulated spectral data.}, language = {en} } @misc{SteuerDankertBernhardLangolfetal.2022, author = {Steuer-Dankert, Linda and Bernhard, Sebastian and Langolf, Jessica and Leicht-Scholten, Carmen}, title = {Managing change and acceptance of digitalization strategies - Implementing the vision of „Internet of Production" (IoP) in existing corporate structures}, series = {Textile Impulse f{\"u}r die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022}, journal = {Textile Impulse f{\"u}r die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022}, pages = {153 -- 153}, year = {2022}, abstract = {The vision of the Internet of Production is to enable a new level of crossdomain collaboration by providing semantically adequate and context-aware data from production, development \& usage in real-time.}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{MuellerSeginWeigandetal.2022, author = {Mueller, Tobias and Segin, Alexander and Weigand, Christoph and Schmitt, Robert H.}, title = {Feature selection for measurement models}, series = {International journal of quality \& reliability management}, journal = {International journal of quality \& reliability management}, number = {Vol. ahead-of-print, No. ahead-of-print.}, publisher = {Emerald Group Publishing Limited}, address = {Bingley}, issn = {0265-671X}, doi = {10.1108/IJQRM-07-2021-0245}, year = {2022}, abstract = {Purpose In the determination of the measurement uncertainty, the GUM procedure requires the building of a measurement model that establishes a functional relationship between the measurand and all influencing quantities. Since the effort of modelling as well as quantifying the measurement uncertainties depend on the number of influencing quantities considered, the aim of this study is to determine relevant influencing quantities and to remove irrelevant ones from the dataset. Design/methodology/approach In this work, it was investigated whether the effort of modelling for the determination of measurement uncertainty can be reduced by the use of feature selection (FS) methods. For this purpose, 9 different FS methods were tested on 16 artificial test datasets, whose properties (number of data points, number of features, complexity, features with low influence and redundant features) were varied via a design of experiments. Findings Based on a success metric, the stability, universality and complexity of the method, two FS methods could be identified that reliably identify relevant and irrelevant influencing quantities for a measurement model. Originality/value For the first time, FS methods were applied to datasets with properties of classical measurement processes. The simulation-based results serve as a basis for further research in the field of FS for measurement models. The identified algorithms will be applied to real measurement processes in the future.}, language = {en} } @article{RoethenbacherCesariDoppleretal.2022, author = {R{\"o}thenbacher, Annika and Cesari, Matteo and Doppler, Christopher E.J. and Okkels, Niels and Willemsen, Nele and Sembowski, Nora and Seger, Aline and Lindner, Marie and Brune, Corinna and Stefani, Ambra and H{\"o}gl, Birgit and Bialonski, Stephan and Borghammer, Per and Fink, Gereon R. and Schober, Martin and Sommerauer, Michael}, title = {RBDtector: an open-source software to detect REM sleep without atonia according to visual scoring criteria}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 20886}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-25163-9}, pages = {1 -- 14}, year = {2022}, abstract = {REM sleep without atonia (RSWA) is a key feature for the diagnosis of rapid eye movement (REM) sleep behaviour disorder (RBD). We introduce RBDtector, a novel open-source software to score RSWA according to established SINBAR visual scoring criteria. We assessed muscle activity of the mentalis, flexor digitorum superficialis (FDS), and anterior tibialis (AT) muscles. RSWA was scored manually as tonic, phasic, and any activity by human scorers as well as using RBDtector in 20 subjects. Subsequently, 174 subjects (72 without RBD and 102 with RBD) were analysed with RBDtector to show the algorithm's applicability. We additionally compared RBDtector estimates to a previously published dataset. RBDtector showed robust conformity with human scorings. The highest congruency was achieved for phasic and any activity of the FDS. Combining mentalis any and FDS any, RBDtector identified RBD subjects with 100\% specificity and 96\% sensitivity applying a cut-off of 20.6\%. Comparable performance was obtained without manual artefact removal. RBD subjects also showed muscle bouts of higher amplitude and longer duration. RBDtector provides estimates of tonic, phasic, and any activity comparable to human scorings. RBDtector, which is freely available, can help identify RBD subjects and provides reliable RSWA metrics.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2022, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Hydrogen-based steel production and global climate protection: An empirical analysis of the potential role of a European cross border adjustment mechanism}, series = {Journal of Cleaner Production}, volume = {380}, journal = {Journal of Cleaner Production}, number = {Part 2, Art. Nr.:135040}, publisher = {Elsevier}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2022.135040}, year = {2022}, abstract = {The European Union's aim to become climate neutral by 2050 necessitates ambitious efforts to reduce carbon emissions. Large reductions can be attained particularly in energy intensive sectors like iron and steel. In order to prevent the relocation of such industries outside the EU in the course of tightening environmental regulations, the establishment of a climate club jointly with other large emitters and alternatively the unilateral implementation of an international cross-border carbon tax mechanism are proposed. This article focuses on the latter option choosing the steel sector as an example. In particular, we investigate the financial conditions under which a European cross border mechanism is capable to protect hydrogen-based steel production routes employed in Europe against more polluting competition from abroad. By using a floor price model, we assess the competitiveness of different steel production routes in selected countries. We evaluate the climate friendliness of steel production on the basis of specific GHG emissions. In addition, we utilize an input-output price model. It enables us to assess impacts of rising cost of steel production on commodities using steel as intermediates. Our results raise concerns that a cross-border tax mechanism will not suffice to bring about competitiveness of hydrogen-based steel production in Europe because the cost tends to remain higher than the cost of steel production in e.g. China. Steel is a classic example for a good used mainly as intermediate for other products. Therefore, a cross-border tax mechanism for steel will increase the price of products produced in the EU that require steel as an input. This can in turn adversely affect competitiveness of these sectors. Hence, the effects of higher steel costs on European exports should be borne in mind and could require the cross-border adjustment mechanism to also subsidize exports.}, language = {en} } @article{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {FEM shakedown analysis of structures under random strength with chance constrained programming}, series = {Vietnam Journal of Mechanics}, volume = {44}, journal = {Vietnam Journal of Mechanics}, number = {4}, publisher = {Vietnam Academy of Science and Technology (VAST)}, issn = {0866-7136}, doi = {10.15625/0866-7136/17943}, pages = {459 -- 473}, year = {2022}, abstract = {Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable.}, language = {en} } @article{BaringhausGaigall2022, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {A goodness-of-fit test for the compound Poisson exponential model}, series = {Journal of Multivariate Analysis}, volume = {195}, journal = {Journal of Multivariate Analysis}, number = {Article 105154}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2022.105154}, year = {2022}, abstract = {On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed.}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @incollection{GkatzogiasVeljkovivPohorylesetal.2022, author = {Gkatzogias, Konstantinos and Veljkoviv, Ana and Pohoryles, Daniel A. and Tsionis, Georgios and Bournas, Dionysios A. and Crowley, Helen and Norl{\´e}n, Hedvig and Butenweg, Christoph and Gervasio, Helena and Manfredi, Vincenzo and Masi, Angelo and Zaharieva, Roumiana}, title = {Policy practice and regional impact assessment for building renovation}, series = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, booktitle = {REEBUILD Integrated Techniques for the Seismic Strengthening \& Energy Efficiency of Existing Buildings}, editor = {Gkatzogias, Konstantinos and Tsionis, Georgios}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, isbn = {978-92-76-60454-9}, issn = {1831-9424}, doi = {10.2760/883122}, pages = {1 -- 68}, year = {2022}, abstract = {The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent.}, language = {en} } @inproceedings{Butenweg2022, author = {Butenweg, Christoph}, title = {Seismic design and evaluation of industrial facilities}, series = {The Third European Conference on Earthquake Engineering and Seismology}, booktitle = {The Third European Conference on Earthquake Engineering and Seismology}, editor = {Vacareanu, Radu and Ionescu, Constantin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-15103-3}, issn = {2524-342X}, doi = {10.1007/978-3-031-15104-0}, pages = {449 -- 464}, year = {2022}, abstract = {Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage.}, language = {en} } @article{KaulenSchwabedalSchneideretal.2022, author = {Kaulen, Lars and Schwabedal, Justus T. C. and Schneider, Jules and Ritter, Philipp and Bialonski, Stephan}, title = {Advanced sleep spindle identification with neural networks}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 7686}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11210-y}, pages = {1 -- 10}, year = {2022}, abstract = {Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.}, language = {en} }