@misc{AbdelghaniMenaaObareetal.2013, author = {Abdelghani, Adnane and Menaa, Bouzid and Obare, Sherine O. and Sch{\"o}ning, Michael Josef}, title = {Special issue on nanoscale science and technology / guest eds.: Adnane Abdelghani, Bouzid Menaa, Sherine O. Obare, Michael J. Sch{\"o}ning}, series = {International journal of nanotechnology}, volume = {Vol. 10}, journal = {International journal of nanotechnology}, number = {No. 5-7}, issn = {1741-8151 (E-Journal), 1475-7435 (Print)}, pages = {373 -- 619}, year = {2013}, language = {en} } @article{AbouzarIngebrandtPoghossianetal.2009, author = {Abouzar, Maryam H. and Ingebrandt, S. and Poghossian, Arshak and Zhang, Y. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {Field-effect nanoplate capacitive pH sensor based on SOI structure}, series = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, journal = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, pages = {55 -- 58}, year = {2009}, language = {en} } @article{AbouzarIngebrandtPoghossianetal.2009, author = {Abouzar, Maryam H. and Ingebrandt, S. and Poghossian, Arshak and Zhang, Y. and Vu, X. T. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitive (bio-)chemical sensor array based on SOI structure}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {670 -- 673}, year = {2009}, language = {en} } @article{AbouzarPedrazaSchoeningetal.2010, author = {Abouzar, Maryam H. and Pedraza, A. M. and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free DNA hybridization and denaturation detection by means of field-effect nanoplate SOI capacitors functionalized with gold nanoparticles}, series = {Procedia Engineering. 5 (2010)}, journal = {Procedia Engineering. 5 (2010)}, isbn = {1877-7058}, pages = {918 -- 921}, year = {2010}, language = {en} } @article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} } @article{AbouzarPoghossianPedrazaetal.2011, author = {Abouzar, Maryam H. and Poghossian, Arshak and Pedraza, A. M. and Gandhi, D. and Ingebrandt, S. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing}, series = {Biosensors and Bioelectronics. 26 (2011), H. 6}, journal = {Biosensors and Bioelectronics. 26 (2011), H. 6}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {3023 -- 3028}, year = {2011}, language = {en} } @article{AbouzarPoghossianRazavietal.2009, author = {Abouzar, Maryam H. and Poghossian, Arshak and Razavi, A. and Williams, O. A. and Bijnens, N. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing}, series = {Biosensors and Bioelectronics. 24 (2009), H. 5}, journal = {Biosensors and Bioelectronics. 24 (2009), H. 5}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {1298 -- 1304}, year = {2009}, language = {en} } @article{AbouzarPoghossianRazavietal.2008, author = {Abouzar, Maryam H. and Poghossian, Arshak and Razavi, Arash and Besmehn, Astrid and Bijnens, Nathalie and Williams, Oliver A. and Haenen, Ken and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection with nanocrystalline-diamond field-effect sensor}, series = {physica status solidi (a). 205 (2008), H. 9}, journal = {physica status solidi (a). 205 (2008), H. 9}, isbn = {1862-6319}, pages = {2141 -- 2145}, year = {2008}, language = {en} } @article{AbouzarPoghossianSiqueiraetal.2010, author = {Abouzar, Maryam H. and Poghossian, Arshak and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Moritz, Werner and Sch{\"o}ning, Michael Josef}, title = {Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {884 -- 890}, year = {2010}, language = {en} } @article{AbouzarSchoeningPoghossianetal.2008, author = {Abouzar, Maryam H. and Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Christiaens, P. and Williams, O. A. and Wagner, P. and Haenen, K.}, title = {Feldeffektsensor auf nanokristalliner Diamantbasis}, series = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092011-5}, pages = {549 -- 558}, year = {2008}, language = {de} } @article{AbouzarWernerSchoeningetal.2011, author = {Abouzar, Maryam H. and Werner, Moritz and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Capacitance-voltage and impedance-spectroscopy characteristics of nanoplate EISOI capacitors}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley-VCH}, address = {Berlin}, isbn = {1862-6319}, pages = {1327 -- 1332}, year = {2011}, language = {en} } @misc{AhlbornGerlachIkenetal.2012, author = {Ahlborn, Kristina and Gerlach, Frank and Iken, Heiko and Sch{\"o}ning, Michael Josef and Vonau, Winfried}, title = {Miniaturisierte, potentiometrische Indikatorelektrode und Verfahren zu deren Herstellung : Offenlegungsschrift}, pages = {7 S.}, year = {2012}, language = {de} } @article{AridaAlhaddadSchoening2011, author = {Arida, Hassan A. and Al-haddad, Ameera and Sch{\"o}ning, Michael Josef}, title = {New Solid-State Organic Membrane Based Lead-Selective Micro-Electrode}, series = {International Journal of Electrochemical Science. 6 (2011), H. 9}, journal = {International Journal of Electrochemical Science. 6 (2011), H. 9}, isbn = {1452-3981}, pages = {3858 -- 3867}, year = {2011}, language = {en} } @inproceedings{AridaKloockSchoening2006, author = {Arida, Hassan A. and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1545}, year = {2006}, abstract = {A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors.}, subject = {Biosensor}, language = {en} } @article{AridaMohsenSchoening2009, author = {Arida, Hassan and Mohsen, Q. and Sch{\"o}ning, Michael Josef}, title = {Microfabrication, characterization and analytical application of a new thin-film silver microsensor}, series = {Electrochimica Acta. 54 (2009), H. 13}, journal = {Electrochimica Acta. 54 (2009), H. 13}, isbn = {0013-4686}, pages = {3543 -- 3547}, year = {2009}, language = {en} } @article{AridaTurekRolkaetal.2009, author = {Arida, Hassan and Turek, Monika and Rolka, David and Sch{\"o}ning, Michael Josef}, title = {A Novel Thin-Film Copper Array Based on an Organic/Inorganic Sensor Hybrid: Microfabrication, Potentiometric Characterization, and Flow-Injection Analysis Application}, series = {Electroanalysis. 21 (2009), H. 10}, journal = {Electroanalysis. 21 (2009), H. 10}, publisher = {Wiley}, address = {Weinheim}, isbn = {1040-0397}, pages = {1145 -- 1151}, year = {2009}, language = {en} } @article{ArreolaKeusgenSchoening2017, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Effect of O2 plasma on properties of electrolyte-insulator-semiconductor structures}, series = {physica status solidi a : applications and materials sciences}, volume = {214}, journal = {physica status solidi a : applications and materials sciences}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700025}, pages = {Artikel 1700025}, year = {2017}, abstract = {Prior to immobilization of biomolecules or cells onto biosensor surfaces, the surface must be physically or chemically activated for further functionalization. Organosilanes are a versatile option as they facilitate the immobilization through their terminal groups and also display self-assembly. Incorporating hydroxyl groups is one of the important methods for primary immobilization. This can be done, for example, with oxygen plasma treatment. However, this treatment can affect the performance of the biosensors and this effect is not quite well understood for surface functionalization. In this work, the effect of O2 plasma treatment on EIS sensors was investigated by means of electrochemical characterizations: capacitance-voltage (C-V) and constant capacitance (ConCap) measurements. After O2 plasma treatment, the potential of the EIS sensor dramatically shifts to a more negative value. This was successfully reset by using an annealing process.}, language = {en} } @article{ArreolaKeusgenSchoening2019, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Toward an immobilization method for spore-based biosensors in oxidative environment}, series = {Electrochimica Acta}, volume = {302}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.electacta.2019.01.148}, pages = {394 -- 401}, year = {2019}, language = {en} } @article{ArreolaKeusgenWagneretal.2019, author = {Arreola, Julio and Keusgen, Michael and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines}, series = {Biosensors and Bioelectronics}, volume = {143}, journal = {Biosensors and Bioelectronics}, number = {111628}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.111628}, year = {2019}, language = {en} } @article{ArreolaMaetzkowDuranetal.2016, author = {Arreola, Julio and M{\"a}tzkow, Malte and Dur{\´a}n, Marlena Palomar and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of the immobilization of bacterial spores on glass substrates with organosilanes}, series = {Physica status solidi (A) : Applications and materials science}, volume = {213}, journal = {Physica status solidi (A) : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532914}, pages = {1463 -- 1470}, year = {2016}, abstract = {Spores can be immobilized on biosensors to function as sensitive recognition elements. However, the immobilization can affect the sensitivity and reproducibility of the sensor signal. In this work, three different immobilization strategies with organosilanes were optimized and characterized to immobilize Bacillus atrophaeus spores on glass substrates. Five different silanization parameters were investigated: nature of the solvent, concentration of the silane, silanization time, curing process, and silanization temperature. The resulting silane layers were resistant to a buffer solution (e.g., Ringer solution) with a polysorbate (e.g., Tween®80) and sonication.}, language = {en} } @article{ArreolaOberlaenderMaetzkowetal.2017, author = {Arreola, Julio and Oberl{\"a}nder, Jan and M{\"a}tzkow, M. and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Surface functionalization for spore-based biosensors with organosilanes}, series = {Electrochimica Acta}, volume = {241}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.04.157}, pages = {237 -- 243}, year = {2017}, abstract = {In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated.}, language = {en} } @article{BandodkarMolinnusMirzaetal.2014, author = {Bandodkar, Amay J. and Molinnus, Denise and Mirza, Omar and Guinovart, Tomas and Windmiller, Joshua R. and Valdes-Ramirez, Gabriela and Andrade, Francisco J. and Sch{\"o}ning, Michael Josef and Wang, Joseph}, title = {Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring}, series = {Biosensors and bioelectronics}, volume = {54}, journal = {Biosensors and bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (E-Journal); 0956-5663 (Print)}, doi = {10.1016/j.bios.2013.11.039}, pages = {603 -- 609}, year = {2014}, abstract = {This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.}, language = {en} } @article{BegingLeinhosJablonskietal.2015, author = {Beging, Stefan and Leinhos, Marcel and Jablonski, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431891}, pages = {1353 -- 1358}, year = {2015}, language = {en} } @article{BegingMlynekHataihimakuletal.2010, author = {Beging, Stefan and Mlynek, Daniela and Hataihimakul, Sudkanung and Poghossian, Arshak and Baldsiefen, Gerhard and Busch, Heinz and Laube, Norbert and Kleinen, Lisa and Sch{\"o}ning, Michael Josef}, title = {Field-effect calcium sensor for the determination of the risk of urinary stone formation}, series = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, journal = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, pages = {374 -- 379}, year = {2010}, language = {en} } @inproceedings{BegingPoghossianMlyneketal.2010, author = {Beging, Stefan and Poghossian, Arshak and Mlynek, D. and Hataihimakul, S. and Pedraza, A. and Dhawan, S. and Laube, N. and Kleinen, L. and Baldsiefen, G. and Busch, H. and Sch{\"o}ning, Michael Josef}, title = {Ion-selective sensors for the determination of the risk of urinary stone formation}, series = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, booktitle = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, address = {Warsaw}, pages = {74 -- 80}, year = {2010}, language = {en} } @article{BegingPoghossianSchoeningetal.2008, author = {Beging, Stefan and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Hataihimakul, Sudkanung and Busch, H. and Baldsiefen, G. and Laube, N. and Kleinen, L. and Hosseiny, R.}, title = {Feldeffektbasierender Ca2+-sensitiver Sensor f{\"u}r den Einsatz im Nativurin zur Bestimmung des Harnsteinbildungsrisikos}, series = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092011-5}, pages = {775 -- 782}, year = {2008}, language = {de} } @article{BertzMolinnusSchoeningetal.2023, author = {Bertz, Morten and Molinnus, Denise and Sch{\"o}ning, Michael Josef and Homma, Takayuki}, title = {Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy}, series = {Chemosensors}, volume = {8}, journal = {Chemosensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080445}, pages = {Artikel 445}, year = {2023}, abstract = {Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore's core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores' coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @article{BiselliBaeckerPoghossianetal.2010, author = {Biselli, Manfred and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Schnitzler, Thomas and Zang, Werner and Wagner, P.}, title = {Entwicklung eines modularen festk{\"o}rperbasierten Sensorsystems f{\"u}r die {\"U}berwachung von Zellkulturfermenationen}, series = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, journal = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {688 -- 691}, year = {2010}, language = {de} } @article{BohrnStuetzFleischeretal.2010, author = {Bohrn, U. and St{\"u}tz, E. and Fleischer, M. and Sch{\"o}ning, Michael Josef}, title = {Real-time detection of CO by eukaryotic cells}, series = {Procedia Engineering. 5 (2010)}, journal = {Procedia Engineering. 5 (2010)}, isbn = {1877-7058}, pages = {17 -- 20}, year = {2010}, language = {en} } @inproceedings{BohrnStuetzFleischeretal.2012, author = {Bohrn, U. and St{\"u}tz, E. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Towards a paradigm change - mammalian cells as sensitive biosensor layers for the detection of unexpected toxic substances in air}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {44 -- 44}, year = {2012}, language = {en} } @article{BohrnStuetzFuchsetal.2011, author = {Bohrn, U. and St{\"u}tz, E. and Fuchs, K. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Air Quality Monitoring using a Whole-Cell based Sensor System}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {1421 -- 1424}, year = {2011}, language = {en} } @article{BohrnStuetzFuchsetal.2012, author = {Bohrn, U. and St{\"u}tz, E. and Fuchs, K. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Monitoring of irritant gas using a whole-cell-based sensor system}, series = {Sensors and Actuators B: Chemical}, volume = {175}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.05.088}, pages = {208 -- 217}, year = {2012}, abstract = {Cell-based sensors for the detection of gases have long been underrepresented, due to the cellular requirement of being cultured in a liquid environment. In this work we established a cell-based gas biosensor for the detection of toxic substances in air, by adapting a commercial sensor chip (Bionas®), previously used for the measurement of pollutants in liquids. Cells of the respiratory tract (A549, RPMI 2650, V79), which survive at a gas phase in a natural context, are used as biological receptors. The physiological cell parameters acidification, respiration and morphology are continuously monitored in parallel. Ammonia was used as a highly water-soluble model gas to test the feasibility of the sensor system. Infrared measurements confirmed the sufficiency of the medium draining method. This sensor system provides a basis for many sensor applications such as environmental monitoring, building technology and public security.}, language = {en} } @inproceedings{BohrnMuchaWerneretal.2012, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and St{\"u}tz, Evamaria and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Detection of toxic chromium species in water using cellbased sensor systems}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.1.14}, pages = {1364 -- 1367}, year = {2012}, language = {en} } @article{BohrnMuchaWerneretal.2013, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and Trattner, Barbara and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and St{\"u}tz, Evamaria and Schmitt-Landsiedel, Doris and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {A critical comparison of cell-based sensor systems for the detection of Cr (VI) in aquatic environment}, series = {Sensors and actuators. B: Chemical}, volume = {Vol. 182}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, pages = {58 -- 65}, year = {2013}, language = {en} } @article{BohrnStuetzFleischeretal.2011, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1345 -- 1350}, year = {2011}, language = {en} } @article{BohrnStuetzFleischeretal.2013, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro}, series = {Biosensors and Bioelectronics. 40 (2013), H. 1}, journal = {Biosensors and Bioelectronics. 40 (2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {393 -- 400}, year = {2013}, language = {en} } @inproceedings{BohrnStuetzFleischeretal.2012, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Living cell-based gas sensor system for the detection of acetone in air}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/3.2.3}, pages = {269 -- 272}, year = {2012}, language = {en} } @article{BresselSchultzeKhanetal.2003, author = {Bressel, A. and Schultze, J.W. and Khan, W. and Wolfaardt, G. M. and Rohns, H.-P. and Irmscher, R. and Sch{\"o}ning, Michael Josef}, title = {High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, isbn = {0013-4686}, pages = {3363 -- 3372}, year = {2003}, language = {en} } @inproceedings{BreuerGuthmannSchoeningetal.2017, author = {Breuer, Lars and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications}, series = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, booktitle = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, doi = {10.3390/proceedings1040524}, pages = {1 -- 4}, year = {2017}, language = {en} } @article{BreuerMangSchoeningetal.2017, author = {Breuer, Lars and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography}, series = {Sensors and Actuators A: Physical}, volume = {268}, journal = {Sensors and Actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2017.11.031}, pages = {126 -- 132}, year = {2017}, language = {en} } @article{BreuerPilasGuthmannetal.2019, author = {Breuer, Lars and Pilas, Johanna and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels}, series = {Sensor and Actuators B: Chemical}, volume = {288}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2019.02.086}, pages = {579 -- 585}, year = {2019}, language = {en} } @article{BreuerRaueKirschbaumetal.2015, author = {Breuer, Lars and Raue, Markus and Kirschbaum, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431944}, pages = {1368 -- 1374}, year = {2015}, abstract = {Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed.}, language = {en} } @inproceedings{BreuerRaueMangetal.2015, author = {Breuer, Lars and Raue, Markus and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P5.8}, pages = {206 -- 209}, year = {2015}, language = {en} } @article{BreuerRaueStrobeletal.2016, author = {Breuer, Lars and Raue, Markus and Strobel, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533056}, pages = {1520 -- 1525}, year = {2016}, abstract = {Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium.}, language = {en} } @article{BronderJessingPoghossianetal.2018, author = {Bronder, Thomas and Jessing, Max P. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {90}, journal = {Analytical Chemistry}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0003-2700}, doi = {10.1021/acs.analchem.8b01807}, pages = {7747 -- 7753}, year = {2018}, abstract = {Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.}, language = {en} } @article{BronderPoghossianJessingetal.2019, author = {Bronder, Thomas and Poghossian, Arshak and Jessing, Max P. and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures}, series = {Biosensors and Bioelectronics}, volume = {126}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.11.019}, pages = {510 -- 517}, year = {2019}, language = {en} } @article{BronderPoghossianKeusgenetal.2017, author = {Bronder, Thomas and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors}, series = {tm - Technisches Messen}, volume = {84}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, address = {Oldenbourg}, doi = {10.1515/teme-2017-0015}, pages = {628 -- 634}, year = {2017}, abstract = {In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, S. and Wu, Chunsheng and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.710}, pages = {544 -- 547}, year = {2015}, abstract = {Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} }