@book{Koehler1990, author = {K{\"o}hler, Bernd}, title = {Werkstofftechnologie der Luft- und Raumfahrt. Teil 2 : Leichtmetalle und St{\"a}hle}, publisher = {Mainz}, address = {Aachen}, isbn = {3-89653-862-4}, pages = {194 S. : graph. Darst.}, year = {1990}, language = {de} } @book{Koehler2001, author = {K{\"o}hler, Bernd}, title = {Werkstofftechnologie der Luft- und Raumfahrt. Teil 2 : Leichtmetalle und St{\"a}hle. - 2. Aufl.}, publisher = {Mainz}, address = {Aachen}, isbn = {3-89653-862-4}, pages = {194 S. : graph. Darst.}, year = {2001}, language = {de} } @article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @inproceedings{LaoBuehrigPolaczekRoeth2011, author = {Lao, B. and B{\"u}hrig-Polaczek, A. and R{\"o}th, Thilo}, title = {Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise}, series = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, booktitle = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, editor = {Wielage, Bernhard}, publisher = {Eigenverlag}, address = {Chemnitz}, isbn = {978-3-00-033801-4}, pages = {413 -- 421}, year = {2011}, language = {de} } @article{LasaiKolmWahleetal.2000, author = {Lasai, Sven and Kolm, Heiko and Wahle, Michael and Pohl, Reiner}, title = {Schwingungsanalyse von Subsystemen mit Hilfe der Simulation}, series = {Automobiltechnische Zeitschrift - ATZ}, volume = {102}, journal = {Automobiltechnische Zeitschrift - ATZ}, number = {4}, isbn = {0001-2785}, pages = {266 -- 270}, year = {2000}, language = {de} } @article{LeipoldFichtnerHeberetal.2006, author = {Leipold, M. and Fichtner, H. and Heber, B. and Groepper, P. and Lascar, S. and Burger, F. and Eiden, M. and Niederstadt, T. and Sickinger, C. and Herbeck, L. and Dachwald, Bernd and Seboldt, W.}, title = {Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System}, series = {Acta Astronautica. 59 (2006), H. 8-11}, journal = {Acta Astronautica. 59 (2006), H. 8-11}, isbn = {0094-5765}, pages = {786 -- 796}, year = {2006}, language = {en} } @book{LemaitreBlome2010, author = {Lemaitre, George and Blome, Hans-Joachim}, title = {Von der klassischen Kosmologie zum Quantenkosmos}, editor = {Blome, Hans-Joachim}, publisher = {Deutsch}, address = {Frankfurt am Main}, isbn = {978-3-8171-3304-8}, pages = {240 S.}, year = {2010}, language = {de} } @article{LettiniHavermannGuidettietal.2010, author = {Lettini, Antonio and Havermann, Marc and Guidetti, Marco and Fornaciari, Andrea}, title = {Improved functionalities and energy saving potential on mobile machines combining electronics with flow sharing valve and variable displacement pump}, series = {IFK 7, 7th International Fluid Power Conference, Efficiency through Fluid Power, 7. Internationales Fluidtechnisches Kolloquium, Workshop Proceedings, Vol. 3, Aachen, DE, 22.-24. Mar, 2010}, journal = {IFK 7, 7th International Fluid Power Conference, Efficiency through Fluid Power, 7. Internationales Fluidtechnisches Kolloquium, Workshop Proceedings, Vol. 3, Aachen, DE, 22.-24. Mar, 2010}, publisher = {-}, isbn = {978-3-940565-92-1}, pages = {103 -- 114}, year = {2010}, language = {en} } @book{Ley1999, author = {Ley, Wilfried}, title = {Raumflugbetrieb : Gemeinschaftsveranstaltung der FH Aachen, der DGLR und der DLR / 12. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 11. November 1999. / Ley Wilfried [Hrsg.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-932182-07-03}, pages = {VIII, 215 S. : zahlr. Ill., graph. Darst.}, year = {1999}, language = {de} } @book{Ley2000, author = {Ley, Wilfried}, title = {Meteoriten und Space Debris : Gemeinschaftsveranstaltung der FH Aachen, der DGLR und der DLR / 13. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 23. November 2000. / Ley, Wilfried [Hrsg.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-932182-14-6}, pages = {VIII, 296 S. : zahlr. Ill., graph. Darst.}, year = {2000}, language = {de} } @book{Ley1998, author = {Ley, Wilfried}, title = {Internationale Raumstation : Konfiguration, Betrieb und Nutzung ; Gemeinschaftsveranstaltung der FH Aachen, der DGLR und des DLR / 11. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 26. November 1998. / Ley, Wilfried [Hrsg.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-932182-04-9}, pages = {VIII, 208 S. : Ill., graph. Darst., 30 cm}, year = {1998}, language = {de} } @book{Ley1997, author = {Ley, Wilfried}, title = {Raumfahrtmissionen zur Erkundung des Sonnensystems : Gemeinschaftsveranstaltung der FH Aachen, der DGLR und des DLR / 10. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 5. November 1997 / Ley, Wilfried [Hrsg.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-922010-99-7}, pages = {VIII, 251 S. : Ill., graph. Darst., 30 cm}, year = {1997}, language = {de} } @book{Ley1995, author = {Ley, Wilfried}, title = {Tr{\"a}gersysteme : Gemeinschaftsveranstaltung der FH Aachen und der DGLR / 8. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 9. November 1995 / Ley, Wilfried [Hrgs.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-922010-92-X}, pages = {VII, 245 S. : Ill., graph. Darst.}, year = {1995}, language = {de} } @book{Ley1990, author = {Ley, Wilfried}, title = {Seilgefesselte Raumflugk{\"o}rper, -Tethertechnik- : Gemeinschaftsveranstaltung der FH Aachen und der DGLR ... / 3. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 13. Dezember 1990. [Wiss. Programmleitung: W. Ley, W. Hallmann]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-922010-59-8}, pages = {Getr. Z{\"a}hl. : graph. Darst.}, year = {1990}, language = {de} } @book{Ley1982, author = {Ley, Wilfried}, title = {Bewertung von Solarkollektormessungen unter natuerlichen und simulierten Bedingungen}, publisher = {Inst. f. Raumsimulation}, address = {K{\"o}ln}, pages = {190 Seiten, 133 Bilder, 19 Tabellen, 43 Quellen}, year = {1982}, language = {de} } @book{Ley1988, author = {Ley, Wilfried}, title = {Handbuch der Raumfahrttechnik : Grundlagen - Nutzung, Raumfahrtsysteme - Produktsicherung u. Produktmanagement / Willi Hallmann; Wilfried Ley}, publisher = {Hanser}, address = {M{\"u}nchen [u.a.]}, isbn = {3446151303}, pages = {XVIII, 792 S : Ill., graph. Darst.}, year = {1988}, language = {de} } @book{Ley2008, author = {Ley, Wilfried}, title = {Handbuch der Raumfahrttechnik / Ley, Wilfried ; Wittmann, Klaus ; Hallmann, Willi [Hrsg.]}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-41185-2}, pages = {814 S. : zahlr. Ill., graph. Darst.}, year = {2008}, language = {de} } @article{LeyPlescherScholzetal.2007, author = {Ley, Wilfried and Plescher, Engelbert and Scholz, Artur and Piepenbrock, Johannes}, title = {COMPASS-1 picosatellite project / Ley, Wilfried ; Plescher, Engelbert ; Scholz, Artur ; Piepenbrock, Johannes}, series = {Small satellites for earth observation : digest of the 6th International symposium of the International Academy of Astronautics, Berlin, April 23 - 26, 2007 / ed. by Rainer Sandau; Hans-Peter R{\"o}ser; Arnoldo Valenzuela}, journal = {Small satellites for earth observation : digest of the 6th International symposium of the International Academy of Astronautics, Berlin, April 23 - 26, 2007 / ed. by Rainer Sandau; Hans-Peter R{\"o}ser; Arnoldo Valenzuela}, publisher = {Wissenschaft und Technik Verl.}, address = {Berlin}, isbn = {9783896855718}, pages = {147 -- 150}, year = {2007}, language = {en} } @book{LeyWittmannHallmann2009, author = {Ley, Wilfried and Wittmann, Klaus and Hallmann, Willi}, title = {Handbook of space technology}, publisher = {Wiley}, address = {Chichester}, isbn = {978-0-470-69739-9}, pages = {XIII, 882 S. : Ill., graph. Darst.}, year = {2009}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @inproceedings{LoebSchartnerSeboldtetal.2006, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Seboldt, Wolfgang and Dachwald, Bernd and Streppel, Joern and Meusemann, Hans and Sch{\"u}lke, Peter}, title = {SEP for a lander mission to the jovian moon europa}, series = {57th International Astronautical Congress}, booktitle = {57th International Astronautical Congress}, doi = {10.2514/6.IAC-06-C4.4.04}, pages = {1 -- 12}, year = {2006}, abstract = {Under DLR-contract, Giessen University and DLR Cologne are studying solar-electric propulsion missions (SEP) to the outer regions of the solar system. The most challenging reference mission concerns the transport of a 1.35-tons chemical lander spacecraft into an 80-RJ circular orbit around Jupiter, which would enable to place a 375 kg lander with 50 kg of scientific instruments on the surface of the icy moon "Europa". Thorough analyses show that the best solution in terms of SEP launch mass times thrusting time would be a two-stage EP module and a triple-junction solar array with concentrators which would be deployed step by step. Mission performance optimizations suggest to propel the spacecraft in the first EP stage by 6 gridded ion thrusters, running at 4.0 kV of beam voltage, which would save launch mass, and in the second stage by 4 thrusters with 1.25 to 1.5 kV of positive high voltage saving thrusting time. In this way, the launch mass of the spacecraft would be kept within 5.3 tons. Without a launcher's C3 and interplanetary gravity assists, Jupiter might be reached within about 4 yrs. The spiraling-down into the parking orbit would need another 1.8 yrs. This "large mission" can be scaled down to a smaller one, e.g., by halving all masses, the solar array power, and the number of thrusters. Due to their reliability, long lifetime and easy control, RIT-22 engines have been chosen for mission analysis. Based on precise tests, the thruster performance has been modeled.}, language = {en} } @article{LoebSchartnerDachwaldetal.2012, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {Interstellar heliopause probe}, series = {Труды МАИ}, journal = {Труды МАИ}, number = {60}, publisher = {Moskauer Staatliches Luftfahrtinstitut (МАИ)}, address = {Moskau}, pages = {2 -- 2}, year = {2012}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft traveling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by European Space Agency (ESA). Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope-electric propulsion (REP). As a further alternative, we here investigate a combination of solar-electric propulsion (SEP) and REP. The SEP stage consists of six 22-cms diameter RIT-22 ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW at begin of mission (BOM) is provided by a lightweight solar array.}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2007, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Seboldt, Wolfgang}, title = {SEP-Sample return from a main belt asteroid}, series = {30th International Electric Propulsion Conference}, booktitle = {30th International Electric Propulsion Conference}, pages = {1 -- 11}, year = {2007}, abstract = {By DLR-contact, sample return missions to the large main-belt asteroid "19, Fortuna" have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP.}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @article{LyonsMikuckiGermanetal.2019, author = {Lyons, W. Berry and Mikucki, Jill A. and German, Laura A. and Welch, Kathleen A. and Welch, Susan A. and Gardener, Christopher B. and Tulaczyk, Slawek M. and Pettit, Erin C. and Kowalski, Julia and Dachwald, Bernd}, title = {The Geochemistry of Englacial Brine from Taylor Glacier, Antarctica}, series = {Journal of Geophysical Research: Biogeosciences}, journal = {Journal of Geophysical Research: Biogeosciences}, publisher = {Wiley}, address = {Hoboken}, issn = {2169-8961}, doi = {10.1029/2018JG004411}, year = {2019}, language = {en} } @incollection{MacdonaldMcGrathAppourchauxetal.2014, author = {Macdonald, Malcolm and McGrath, C. and Appourchaux, T. and Dachwald, Bernd and Finsterle, W. and Gizon, L. and Liewer, P. C. and McInnes, Colin R. and Mengali, G. and Seboldt, W. and Sekii, T. and Solanki, S. K. and Velli, M. and Wimmer-Schweingruber, R. F. and Spietz, Peter and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a solar polar mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, editor = {Macdonald, Malcolm}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-34906-5}, doi = {10.1007/978-3-642-34907-2_17}, pages = {243 -- 257}, year = {2014}, abstract = {A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100-125 m to deliver a 'sufficient value' minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass.}, language = {en} } @article{MaiwaldDachwald2010, author = {Maiwald, Volker and Dachwald, Bernd}, title = {Mission Design for a Multiple-Rendezvous Mission to Jupiter's Trojans}, pages = {3}, year = {2010}, language = {en} } @article{MatheisRoethWagner2005, author = {Matheis, Anton and R{\"o}th, Thilo and Wagner, Manfred}, title = {Studentenprojekt "Capro" - eine virtuelle Sportwagenstudie "Vision 2015"}, year = {2005}, abstract = {Design- und Karosseriebaustudenten der FH Aachen entwickeln gemeinsam mit externen Fachleuten unter Einsatz virtueller Entwicklungswerkzeuge ein Konzept f{\"u}r einen Sportwagen}, subject = {Karosseriebau}, language = {de} } @article{MathiakPlescherWillnecker2005, author = {Mathiak, Gerhard and Plescher, Engelbert and Willnecker, Rainer}, title = {Liquid metal diffusion experiments in microgravity - Vibrational effects}, series = {Measurement science and technology}, volume = {Vol. 16}, journal = {Measurement science and technology}, number = {No. 2}, issn = {0957-0233}, doi = {10.1088/0957-0233/16/2/003}, pages = {336}, year = {2005}, language = {en} } @inproceedings{MathiakPlescherWillnecker2003, author = {Mathiak, Gerhard and Plescher, Engelbert and Willnecker, Rainer}, title = {Parabolic flight experiments about vibrational effects on diffusion experiments}, series = {54th International Astronautical Congress of the International Astronautical Federation (IAF) : Bremen, 29 Sept. 2003 through 3 Oct. 2003 ; vol. 1}, booktitle = {54th International Astronautical Congress of the International Astronautical Federation (IAF) : Bremen, 29 Sept. 2003 through 3 Oct. 2003 ; vol. 1}, organization = {International Astronautical Congress of the International Astronautical Federation <54, 2003, Bremen>}, pages = {4389 -- 4396}, year = {2003}, language = {de} } @article{MathiakWillneckerPlescher2005, author = {Mathiak, Gerhard and Willnecker, Rainer and Plescher, Engelbert}, title = {Vibrational effects on diffusion experiments}, series = {Microgravity science and technology : international journal for microgravity research and applications}, volume = {Vol. 15}, journal = {Microgravity science and technology : international journal for microgravity research and applications}, number = {No. 1}, issn = {0938-0108}, pages = {295 -- 300}, year = {2005}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @article{MaurischatPerkins2020, author = {Maurischat, Andreas and Perkins, Rudolph}, title = {Taylor coefficients of Anderson generating functions and Drinfeld torsion extensions}, number = {Vol. 18, No. 01}, publisher = {World Scientific}, address = {Singapur}, doi = {10.1142/S1793042122500099}, pages = {113 -- 130}, year = {2020}, abstract = {We generalize our work on Carlitz prime power torsion extension to torsion extensions of Drinfeld modules of arbitrary rank. As in the Carlitz case, we give a description of these extensions in terms of evaluations of Anderson generating functions and their hyperderivatives at roots of unity. We also give a direct proof that the image of the Galois representation attached to the p-adic Tate module lies in the p-adic points of the motivic Galois group. This is a generalization of the corresponding result of Chang and Papanikolas for the t-adic case.}, language = {en} } @article{McArdellBarteltKowalski2007, author = {McArdell, Brian W. and Bartelt, Perry and Kowalski, Julia}, title = {Field observations of basal forces and fluid pore pressure in a debris flow}, series = {Geophysical Research Letters (GRL)}, volume = {34}, journal = {Geophysical Research Letters (GRL)}, number = {7}, isbn = {0094-8276}, year = {2007}, abstract = {Using results from an 8 m2 instrumented force plate we describe field measurements of normal and shear stresses, and fluid pore pressure for a debris flow. The flow depth increased from 0.1 to 1 m within the first 12 s of flow front arrival, remained relatively constant until 100 s, and then gradually decreased to 0.5 m by 600 s. Normal and shear stresses and pore fluid pressure varied in-phase with the flow depth. Calculated bulk densities are ρb = 2000-2250 kg m-3 for the bulk flow and ρf = 1600-1750 kg m-3 for the fluid phase. The ratio of effective normal stress to shear stress yields a Coulomb basal friction angle of ϕ = 26° at the flow front. We did not find a strong correlation between the degree of agitation in the flow, estimated using the signal from a geophone on the force plate, and an assumed dynamic pore fluid pressure. Our data support the idea that excess pore-fluid pressures are long lived in debris flows and therefore contribute to their unusual mobility.}, language = {en} } @incollection{McInnesBothmerDachwaldetal.2014, author = {McInnes, Colin R. and Bothmer, Volker and Dachwald, Bernd and Geppert, Ulrich R. M. E. and Heiligers, Jeannette and Hilgers, Alan and Johnson, Les and Macdonald, Malcolm and Reinhard, Ruedeger and Seboldt, Wolfgang and Spietz, Peter}, title = {Gossamer roadmap technology reference study for a Sub-L1 Space Weather Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {227 -- 242}, year = {2014}, abstract = {A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass platform and payload which can be accommodated on the DLR/ESA Gossamer-3 technology demonstration mission. A direct escape from Geostationary Transfer Orbit is assumed with the sail deployed after the escape burn. The use of a miniaturized, low mass platform and payload then allows the Gossamer-3 solar sail to potentially double the warning time of space weather events. The mission profile and mass budgets will be presented to achieve these ambitious goals.}, language = {en} } @inproceedings{Mertens2000, author = {Mertens, Josef}, title = {Laminar leading edges: manufacturing, contamination, and operational aspects - results from the German RaWid programme}, year = {2000}, abstract = {RaWid was the German national technology programme on transonic aerodynamics and supporting technologies, lasting from 1995 to 1998. One of the main topics was laminar wing development. Besides aerodynamic design work, many operational aspects were investigated. A manufacturing concept was developed to be applied to operational laminar wings and empennages. It was built in a large scale manufacturing demonstrator with the aerodynamic shape of a 1,5 m section of the A320 fin nose. Tolerances in shape and roughness fulfilled all requirements. The construction can easily be adapted to varying stiffness and strength requirements. Weight and manufacturing costs are comparable to common nose designs. The mock-up to be designed in ALTTA is based on this manufacturing principle. Another critical point is contamination of suction surfaces. Several tests were performed to investigate perforated titanium suction surfaces at realistic operational conditions: - a one year flight test with a suction plate in the stagnation area of the Airbus "Beluga" - a one year test of several suction plates in a ground test near the airport - a one year test of a working suction ground test installation at all weather conditions. No critical results were found. There is no long term suction degradation visible. Icing conditions and ground de-icing fluids used on airports did not pose severe problems. Some problems detected require only respection of weak design constraints.}, subject = {Laminare Str{\"o}mung}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Aerodynamic multi point design challenge}, series = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_4}, pages = {53 -- 67}, year = {1997}, abstract = {In the chapter "Son of Concorde, a Technology Challenge" one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Required aerodynamic technologies}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_5}, pages = {69 -- 96}, year = {1997}, abstract = {In the preceeding chapters on "Son of Concorde, a Technology Challenge" and "Aerodynamic Multipoint Design Challenge" it was explained, that a well balanced contribution of new technologies in all major disciplines is required for realisation of a new Supersonic Commercial Transport (SCT). One of these technologies - usually one of the most important for aircraft-is aerodynamics. Here, the required "pure" aerodynamic technologies are specified in more detail, according to our present knowledge. Increasing insight into the problems may change the balance of importance of the individual technologies and may require some more contributions. We must never confine our knowledge to the knowledge base of an expert at a given time, but must stay open for new insights.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Certification of supersonic civil transports}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_6}, pages = {97 -- 103}, year = {1997}, abstract = {Since certification of Concorde new certification standards were introduced including many new regulations to improve flight safety. Most of these standards are to prevent severe accidents in the future which happened in the past (here: after Concorde's certification). A new SCT has to fulfill these standards, although Concorde had none of these accidents. But accidents - although they sometimes occurred only for a specific aircraft type - have to be avoided for any (new) aircraft. Because of existing aircraft without typical accident types having demonstrated their reliability, they are allowed to go on based on their old certification; although sometimes new rules prevent accident types which are not connected to specific aircraft types - like e.g. evacuation rules. Anyway, Concorde is allowed to fly based on its old certification, and hopefully in the future will fly as safely as in the past. But a new SCT has to fulfill updated rules like any other aircraft, and it has to be "just another aircraft" [75].}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Supersonic laminar flow}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_18}, pages = {275 -- 290}, year = {1997}, abstract = {Supersonic transports are very drag sensitive. Technology to reduce drag by application of laminar flow, therefore, will be important; it is a prerequisite to achieve very long range capability. In earlier studies it was assumed that SCTs would only become possible by application of laminar flow [376]. But today, we request an SCT to be viable without application of laminar flow in order to maintain its competitiveness when laminar flow becomes available for subsonic and supersonic transports. By reducing fuel burned, laminar flow drag reduction reduces size and weight of the aircraft, or increases range capability -whereas otherwise size and weight would grow towards infinity. Transition mechanisms from laminar to turbulent state of the boundary layer flow (ALT, CFI, TSI) function as for transonic transports, but at more severe conditions: higher sweep angles, cooled surfaces; higher mode instabilities (HMI) must at least be taken into account, although they may not become important below Mach 3. Hitherto there is a worldwide lack of ground test facilities to investigate TSI at the expected cruise Mach numbers between 1.6 and 2.4; in Stuttgart, Germany one such facility -a Ludwieg tube- is still in the validation phase. A quiet Ludwieg tunnel could be a favourable choice for Europe. But it will require a new approach in designing aircraft which includes improved theoretical predictions, usage of classical wind tunnels for turbulent flow and flight tests for validation.}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Son of Concorde, a technology challenge}, series = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_3}, pages = {31 -- 51}, year = {1997}, abstract = {Concorde (Figure 9) is the only supersonic airliner which has been introduced into regular passenger service. It is still in service at British Airways and Air France without any flight accidents, and probably will stay in service for at least for ten more years.}, language = {en} } @article{Mertens1985, author = {Mertens, Josef}, title = {Charakteristiken des Staub-Gas-Gemisches}, series = {Zeitschrift f{\"u}r angewandte Mathematik und Mechanik : ZAMM. 65 (1985), H. 4}, journal = {Zeitschrift f{\"u}r angewandte Mathematik und Mechanik : ZAMM. 65 (1985), H. 4}, isbn = {1521-4001}, pages = {T211 -- T213}, year = {1985}, language = {de} } @book{Mertens1983, author = {Mertens, Josef}, title = {Instation{\"a}re Str{\"o}mungen von Gasen mit brennbaren Partikeln}, address = {Aachen}, pages = {III, 245 S. : graph. Darst.}, year = {1983}, language = {de} } @inproceedings{Mertens2001, author = {Mertens, Josef}, title = {Next steps envisaged to improve wing performance of commercial aircraft}, series = {Aerodynamic drag reduction technologies : proceedings of the CEAS/DragNet European Drag Reduction Conference, 19-21 June 2000, Potsdam, Germany. - (Notes on numerical fluid mechanics ; 76)}, booktitle = {Aerodynamic drag reduction technologies : proceedings of the CEAS/DragNet European Drag Reduction Conference, 19-21 June 2000, Potsdam, Germany. - (Notes on numerical fluid mechanics ; 76)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-41911-X (Print)}, doi = {10.1007/978-3-540-45359-8_26}, pages = {246 -- 255}, year = {2001}, language = {en} } @incollection{Mertens1997, author = {Mertens, Josef}, title = {Reduction of aerodynamic drag (RaWid)-Status after the first year of the program}, series = {New results in numerical and experimental fluid mechanics. - (Notes on numerical fluid mechanics ; 60)}, booktitle = {New results in numerical and experimental fluid mechanics. - (Notes on numerical fluid mechanics ; 60)}, publisher = {Vieweg}, address = {Braunschweig [u.a.]}, isbn = {3-528-06960-0}, doi = {10.1007/978-3-322-86573-1_2}, pages = {7 -- 14}, year = {1997}, abstract = {The technology programme "Reduction of aerodynamic drag (RaWid)" for high speed aerodynamics at Daimler-Benz Aerospace Airbus is sponsered by the German ministry for education, research and technology since July 1, 1995. Connected to this industrial programme are the cooperation programmes "MEGAFLOW" under leadership of the DLR and "Transition" by the DFG, and several contributions by DLR and universities. The programme is oriented towards technologies required for a MEGALINER which gains momentum by the ambitious plans for a new large Airbus A3XX. In the first year new technological steps were undertaken in theory, design and experiment. Some critical steps were verified by wing designs checked in wind tunnel tests.}, language = {en} } @article{Mertens2006, author = {Mertens, Josef}, title = {Luft hat keine Balken, aber enorme Kr{\"a}fte : Aerodynamik - die unsichtbare Kraft}, series = {HEmagazin : das Hocheffizienz-Magazin von Wilo. 2006 (2006), H. 1}, journal = {HEmagazin : das Hocheffizienz-Magazin von Wilo. 2006 (2006), H. 1}, publisher = {-}, pages = {4 -- 9}, year = {2006}, language = {de} } @article{Mertens1998, author = {Mertens, Josef}, title = {Required technologies for supersonic aircraft}, series = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamic research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, journal = {Fluid dynamics research on supersonic aircraft : this report is a compilation of the edited proceedings of the special course on "Fluid dynamic research on supersonic aircraft" held at the Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genese, Belgium, 25-29 May 1998}, publisher = {Research and Technology Organization}, address = {Neuilly-sur-Seine}, isbn = {92-837-1007-X}, pages = {5.1 -- 5.16}, year = {1998}, language = {en} }