@inproceedings{PijanowskaRemiszewskaPederzollietal.2006, author = {Pijanowska, Dorota G. and Remiszewska, Elzbieta and Pederzolli, Cecilia and Lunelli, Lorenzo and Vendano, Michele and Canteri, Roberto and Dudzinski, Konrad and Kruk, Jerzy and Torbicz, Wladyslaw}, title = {Surface modification for microreactor fabrication}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1480}, year = {2006}, abstract = {In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff's base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and infrared spectroscopy (FTIR). The supports with immobilised enzyme (urease) were also tested in combination with microreactors fabricated in silicon and Perspex, operating in a flow-through system. For microreactors filled with urease immobilised on glass beads (Sigma) and on polymeric beads (PAN), a very high and stable signal (pH change) was obtained. The developed method of urease immobilisation can be stated to be very effective.}, subject = {Biosensor}, language = {en} } @inproceedings{KoplinSiemonsOcenValentinetal.2006, author = {Koplin, Tobias J. and Siemons, Maike and Oc{\´e}n-Val{\´e}ntin, C{\´e}sar and Sanders, Daniel and Simon, Ulrich}, title = {Workflow for high throughput screening of gas sensing materials}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1407}, year = {2006}, abstract = {The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide.}, subject = {Biosensor}, language = {en} }