@inproceedings{SchulteTiggesMatheisRekeetal.2023, author = {Schulte-Tigges, Joschua and Matheis, Dominik and Reke, Michael and Walter, Thomas and Kaszner, Daniel}, title = {Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain}, series = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, booktitle = {HCII 2023: HCI in Mobility, Transport, and Automotive Systems}, editor = {Kr{\"o}mker, Heidi}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-35677-3 (Print)}, doi = {10.1007/978-3-031-35678-0_12}, pages = {200 -- 210}, year = {2023}, abstract = {Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle's software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany.}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{GaigallGerstenberg2023, author = {Gaigall, Daniel and Gerstenberg, Julian}, title = {Cram{\´e}r-von-Mises tests for the distribution of the excess over a confidence level}, series = {Journal of Nonparametric Statistics}, journal = {Journal of Nonparametric Statistics}, publisher = {Taylor \& Francis}, issn = {1048-5252 (Print)}, doi = {10.1080/10485252.2023.2173958}, year = {2023}, abstract = {The Cram{\´e}r-von-Mises distance is applied to the distribution of the excess over a confidence level. Asymptotics of related statistics are investigated, and it is seen that the obtained limit distributions differ from the classical ones. For that reason, quantiles of the new limit distributions are given and new bootstrap techniques for approximation purposes are introduced and justified. The results motivate new one-sample goodness-of-fit tests for the distribution of the excess over a confidence level and a new confidence interval for the related fitting error. Simulation studies investigate size and power of the tests as well as coverage probabilities of the confidence interval in the finite sample case. A practice-oriented application of the Cram{\´e}r-von-Mises tests is the determination of an appropriate confidence level for the fitting approach. The adoption of the idea to the well-known problem of threshold detection in the context of peaks over threshold modelling is sketched and illustrated by data examples.}, language = {en} } @article{AlnemerKotliarNeuhausetal.2023, author = {Alnemer, Momin Sami Mohammad and Kotliar, Konstantin and Neuhaus, Valentin and Pape, Hans-Christoph and Ciritsis, Bernhard D.}, title = {Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model}, series = {Cost Effectiveness and Resource Allocation}, journal = {Cost Effectiveness and Resource Allocation}, number = {21, Article number: 77}, publisher = {Springer Nature}, issn = {1478-7547}, doi = {10.1186/s12962-023-00482-4}, pages = {12 Seiten}, year = {2023}, abstract = {Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare \& Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10\% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10\% fracture risk reduction, model A costs between \$8,850 and \$46,940 per quality-adjusted life-year (\$/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8\% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side's prophylaxis, the patient's age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between \$11,000/QALY and \$74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks.}, language = {en} } @article{HaegerGrankinWagner2023, author = {Haeger, Gerrit and Grankin, Alina and Wagner, Michaela}, title = {Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology}, series = {Applied Research}, journal = {Applied Research}, number = {Early View}, publisher = {Wiley-VCH}, issn = {2702-4288}, doi = {10.1002/appl.202200106}, pages = {1 -- 15}, year = {2023}, abstract = {Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47\%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78\%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems.}, language = {en} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @incollection{GohTopcuMadabhushietal.2023, author = {Goh, Kheng Lim and Top{\c{c}}u, Murat and Madabhushi, Gopal S. P. and Staat, Manfred}, title = {Collagen fibril reinforcement in connective tissue extracellular matrices}, series = {Handbook of the extracellular matrix}, booktitle = {Handbook of the extracellular matrix}, editor = {Maia, Fatima Raquel Azevedo and Miguel Oliveira, J. and Reis, Rui L.}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-030-92090-6 (Print)}, doi = {10.1007/978-3-030-92090-6_6-1}, pages = {1 -- 20}, year = {2023}, abstract = {The connective tissues such as tendons contain an extracellular matrix (ECM) comprising collagen fibrils scattered within the ground substance. These fibrils are instrumental in lending mechanical stability to tissues. Unfortunately, our understanding of how collagen fibrils reinforce the ECM remains limited, with no direct experimental evidence substantiating current theories. Earlier theoretical studies on collagen fibril reinforcement in the ECM have relied predominantly on the assumption of uniform cylindrical fibers, which is inadequate for modelling collagen fibrils, which possessed tapered ends. Recently, Top{\c{c}}u and colleagues published a paper in the International Journal of Solids and Structures, presenting a generalized shear-lag theory for the transfer of elastic stress between the matrix and fibers with tapered ends. This paper is a positive step towards comprehending the mechanics of the ECM and makes a valuable contribution to formulating a complete theory of collagen fibril reinforcement in the ECM.}, language = {en} } @article{HaegerWirgesTanzmannetal.2023, author = {Haeger, Gerrit and Wirges, Jessika and Tanzmann, Nicole and Oyen, Sven and Jolmes, Tristan and Jaeger, Karl-Erich and Sch{\"o}rken, Ulrich and Bongaerts, Johannes and Siegert, Petra}, title = {Chaperone assisted recombinant expression of a mycobacterial aminoacylase in Vibrio natriegens and Escherichia coli capable of N-lauroyl-L-amino acid synthesis}, series = {Microbial Cell Factories}, journal = {Microbial Cell Factories}, number = {22}, publisher = {Springer Nature}, issn = {1475-2859}, doi = {10.1186/s12934-023-02079-1}, pages = {Article number: 77 (2023)}, year = {2023}, abstract = {Background Aminoacylases are highly promising enzymes for the green synthesis of acyl-amino acids, potentially replacing the environmentally harmful Schotten-Baumann reaction. Long-chain acyl-amino acids can serve as strong surfactants and emulsifiers, with application in cosmetic industries. Heterologous expression of these enzymes, however, is often hampered, limiting their use in industrial processes. Results We identified a novel mycobacterial aminoacylase gene from Mycolicibacterium smegmatis MKD 8, cloned and expressed it in Escherichia coli and Vibrio natriegens using the T7 overexpression system. The recombinant enzyme was prone to aggregate as inclusion bodies, and while V. natriegens Vmax™ could produce soluble aminoacylase upon induction with isopropyl β-d-1-thiogalactopyranoside (IPTG), E. coli BL21 (DE3) needed autoinduction with lactose to produce soluble recombinant protein. We successfully conducted a chaperone co-expression study in both organisms to further enhance aminoacylase production and found that overexpression of chaperones GroEL/S enhanced aminoacylase activity in the cell-free extract 1.8-fold in V. natriegens and E. coli. Eventually, E. coli ArcticExpress™ (DE3), which co-expresses cold-adapted chaperonins Cpn60/10 from Oleispira antarctica, cultivated at 12 °C, rendered the most suitable expression system for this aminoacylase and exhibited twice the aminoacylase activity in the cell-free extract compared to E. coli BL21 (DE3) with GroEL/S co-expression at 20 °C. The purified aminoacylase was characterized based on hydrolytic activities, being most stable and active at pH 7.0, with a maximum activity at 70 °C, and stability at 40 °C and pH 7.0 for 5 days. The aminoacylase strongly prefers short-chain acyl-amino acids with smaller, hydrophobic amino acid residues. Several long-chain amino acids were fairly accepted in hydrolysis as well, especially N-lauroyl-L-methionine. To initially evaluate the relevance of this aminoacylase for the synthesis of N-acyl-amino acids, we demonstrated that lauroyl-methionine can be synthesized from lauric acid and methionine in an aqueous system. Conclusion Our results suggest that the recombinant enzyme is well suited for synthesis reactions and will thus be further investigated.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{Pfaff2023, author = {Pfaff, Raphael}, title = {Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach}, series = {Railway Engineering Science}, volume = {31}, journal = {Railway Engineering Science}, number = {2}, publisher = {SpringerOpen}, issn = {2662-4753 (eISSN)}, doi = {10.1007/s40534-023-00303-7}, pages = {135 -- 144}, year = {2023}, abstract = {The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.}, language = {en} } @article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @article{DigelAkimbekovRogachevetal.2023, author = {Digel, Ilya and Akimbekov, Nuraly S. and Rogachev, Evgeniy and Pogorelova, Natalia}, title = {Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties}, series = {Cellulose}, journal = {Cellulose}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1572-882X (Online)}, doi = {10.1007/s10570-023-05592-z}, pages = {15 Seiten}, year = {2023}, abstract = {In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4\% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L-1 after a 18-20 days incubation period. Glucose in general lead to a higher BC yield (173 g L-1) compared to sucrose (163.5 g L-1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates.}, language = {en} } @article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @article{FayyaziSardarThomasetal.2023, author = {Fayyazi, Mojgan and Sardar, Paramjotsingh and Thomas, Sumit Infent and Daghigh, Roonak and Jamali, Ali and Esch, Thomas and Kemper, Hans and Langari, Reza and Khayyam, Hamid}, title = {Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles}, volume = {15}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/su15065249}, pages = {38}, year = {2023}, abstract = {Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.}, language = {en} } @incollection{EggertZaehlWolfetal.2023, author = {Eggert, Mathias and Z{\"a}hl, Philipp M. and Wolf, Martin R. and Haase, Martin}, title = {Applying leaderboards for quality improvement in software development projects}, series = {Software Engineering for Games in Serious Contexts}, booktitle = {Software Engineering for Games in Serious Contexts}, editor = {Cooper, Kendra M.L. and Bucchiarone, Antonio}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-33337-8 (Print)}, doi = {10.1007/978-3-031-33338-5_11}, pages = {243 -- 263}, year = {2023}, abstract = {Software development projects often fail because of insufficient code quality. It is now well documented that the task of testing software, for example, is perceived as uninteresting and rather boring, leading to poor software quality and major challenges to software development companies. One promising approach to increase the motivation for considering software quality is the use of gamification. Initial research works already investigated the effects of gamification on software developers and come to promising. Nevertheless, a lack of results from field experiments exists, which motivates the chapter at hand. By conducting a gamification experiment with five student software projects and by interviewing the project members, the chapter provides insights into the changing programming behavior of information systems students when confronted with a leaderboard. The results reveal a motivational effect as well as a reduction of code smells.}, language = {en} } @inproceedings{ArndtConzenElsenetal.2023, author = {Arndt, Tobias and Conzen, Max and Elsen, Ingo and Ferrein, Alexander and Galla, Oskar and K{\"o}se, Hakan and Schiffer, Stefan and Tschesche, Matteo}, title = {Anomaly detection in the metal-textile industry for the reduction of the cognitive load of quality control workers}, series = {PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments}, booktitle = {PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments}, publisher = {ACM}, isbn = {9798400700699}, doi = {10.1145/3594806.3596558}, pages = {535 -- 542}, year = {2023}, abstract = {This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100\% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products.}, language = {en} } @article{AyalaHarrisKleefeldetal.2023, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas and Pallikarakis, Nikolaos}, title = {Analysis of the transmission eigenvalue problem with two conductivity parameters}, series = {Applicable Analysis}, journal = {Applicable Analysis}, publisher = {Taylor \& Francis}, issn = {0003-6811}, doi = {10.1080/00036811.2023.2181167}, pages = {37 Seiten}, year = {2023}, abstract = {In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work.}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @article{KowalewskiBragardHueningetal.2023, author = {Kowalewski, Paul and Bragard, Michael and H{\"u}ning, Felix and De Doncker, Rik W.}, title = {An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives}, series = {IEEE Transactions on Instrumentation and Measurement}, journal = {IEEE Transactions on Instrumentation and Measurement}, publisher = {IEEE}, issn = {0018-9456 (Print)}, doi = {10.1109/TIM.2023.3326166}, pages = {10 Seiten}, year = {2023}, abstract = {This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth.}, language = {en} } @article{Gaigall2023, author = {Gaigall, Daniel}, title = {Allocating and forecasting changes in risk}, series = {Journal of risk}, volume = {25}, journal = {Journal of risk}, number = {3}, editor = {AitSahlia, Farid}, publisher = {Infopro Digital Risk}, address = {London}, issn = {1755-2842}, doi = {10.21314/JOR.2022.048}, pages = {1 -- 24}, year = {2023}, abstract = {We consider time-dependent portfolios and discuss the allocation of changes in the risk of a portfolio to changes in the portfolio's components. For this purpose we adopt established allocation principles. We also use our approach to obtain forecasts for changes in the risk of the portfolio's components. To put the approach into practice we present an implementation based on the output of a simulation. Allocation is illustrated with an example portfolio in the context of Solvency II. The quality of the forecasts is investigated with an empirical study.}, language = {en} } @inproceedings{KohlFreyerKraemeretal.2023, author = {Kohl, Philipp and Freyer, Nils and Kr{\"a}mer, Yoka and Werth, Henri and Wolf, Steffen and Kraft, Bodo and Meinecke, Matthias and Z{\"u}ndorf, Albert}, title = {ALE: a simulation-based active learning evaluation framework for the parameter-driven comparison of query strategies for NLP}, series = {Deep Learning Theory and Applications}, booktitle = {Deep Learning Theory and Applications}, editor = {Conte, Donatello and Fred, Ana and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-39058-6 (Print)}, doi = {10.1007/978-3-031-39059-3_16}, pages = {235 -- 253}, year = {2023}, abstract = {Supervised machine learning and deep learning require a large amount of labeled data, which data scientists obtain in a manual, and time-consuming annotation process. To mitigate this challenge, Active Learning (AL) proposes promising data points to annotators they annotate next instead of a subsequent or random sample. This method is supposed to save annotation effort while maintaining model performance. However, practitioners face many AL strategies for different tasks and need an empirical basis to choose between them. Surveys categorize AL strategies into taxonomies without performance indications. Presentations of novel AL strategies compare the performance to a small subset of strategies. Our contribution addresses the empirical basis by introducing a reproducible active learning evaluation (ALE) framework for the comparative evaluation of AL strategies in NLP. The framework allows the implementation of AL strategies with low effort and a fair data-driven comparison through defining and tracking experiment parameters (e.g., initial dataset size, number of data points per query step, and the budget). ALE helps practitioners to make more informed decisions, and researchers can focus on developing new, effective AL strategies and deriving best practices for specific use cases. With best practices, practitioners can lower their annotation costs. We present a case study to illustrate how to use the framework.}, language = {en} } @incollection{FreyerKempt2023, author = {Freyer, Nils and Kempt, Hendrik}, title = {AI-DSS in healthcare and their power over health-insecure collectives}, series = {Justice in global health}, booktitle = {Justice in global health}, editor = {Bhakuni, Himani and Miotto, Lucas}, publisher = {Routledge}, address = {London}, isbn = {9781003399933}, doi = {10.4324/9781003399933-4}, pages = {38 -- 55}, year = {2023}, abstract = {AI-based systems are nearing ubiquity not only in everyday low-stakes activities but also in medical procedures. To protect patients and physicians alike, explainability requirements have been proposed for the operation of AI-based decision support systems (AI-DSS), which adds hurdles to the productive use of AI in clinical contexts. This raises two questions: Who decides these requirements? And how should access to AI-DSS be provided to communities that reject these standards (particularly when such communities are expert-scarce)? This chapter investigates a dilemma that emerges from the implementation of global AI governance. While rejecting global AI governance limits the ability to help communities in need, global AI governance risks undermining and subjecting health-insecure communities to the force of the neo-colonial world order. For this, this chapter first surveys the current landscape of AI governance and introduces the approach of relational egalitarianism as key to (global health) justice. To discuss the two horns of the referred dilemma, the core power imbalances faced by health-insecure collectives (HICs) are examined. The chapter argues that only strong demands of a dual strategy towards health-secure collectives can both remedy the immediate needs of HICs and enable them to become healthcare independent.}, language = {en} } @article{AbbasHedwigBalcetal.2023, author = {Abbas, Karim and Hedwig, Lukas and Balc, Nicolae and Bremen, Sebastian}, title = {Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling}, series = {Polymers}, volume = {2023}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym15214293}, pages = {Artikel 4293}, year = {2023}, abstract = {Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK's economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100\% solid and subjected to thermal post-treatment. This corresponds to a 20\% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15\% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70\% in tool production.}, language = {en} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @misc{SteuerDankertBernhardLangolfetal.2023, author = {Steuer-Dankert, Linda and Bernhard, Sebastian and Langolf, Jessica and Leicht-Scholten, Carmen}, title = {About the paradox of sustainable production and what we can do about it!}, series = {Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23)}, journal = {Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23)}, year = {2023}, abstract = {Sustainability is playing an increasingly important role. Not least due to the definition of the sustainable development goals (SDGs) in the framework of the agenda 2030 by the United Nations (UN) in 2015 (United Nations, n.d.), it has become clear that the cooperation of different actors is needed to achieve the defined 17 goals. Industry, as a global actor, has a special role to play in this. In the course of sustainable production processes and chains, the industry is confronted with the responsibility of reflecting on the consequences of its own trade on an ecological, economic, and also social level and deriving measures that, according to the definition of sustainability (Hauff, 1987), will also enable future generations to satisfy their needs. While the ecological pillar of sustainability is already being addressed by different industrial initiatives (Deloitte, 2021), it is questionable to what extent the economic and, above all, the social pillars of sustainability also play a decisive role. Accordingly, it is questionable to what extent sustainability in its triad of social, ecological, and economic aspects is taken into account holistically at all, and thus to what extent the industry contributes to achieving the 17 goals defined by the UN. This paper presents a qualitative study that explores these questions. Interviewing 31 representatives from the manufacturing industry in Germany, results indicate a Paradox of Sustainable Production expressed by a theoretical reflection of the need for focusing on people in production processes on the one hand and a lack of addressing the social pillar of sustainability in concepts on the other hand. However, while it is a troublesome finding given the striking need for sustainable development (The-Sustainable-Development-Goals-Report-2022; Kropp 2019; von Hauff 2021; Roy and Singh 2017), the paradox directly lays out a path of resolving it. This is because, given its nature, we can see that we could resolve it via the implementation of strong educational efforts trying to help the respective people of the manufacturing industry to understand the holistic and interdependent character of sustainable development (The-Sustainable-Development-Goals-Report-2022).}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{SildatkeKarwanniKraftetal.2023, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {A distributed microservice architecture pattern for the automated generation of information extraction pipelines}, series = {SN Computer Science}, journal = {SN Computer Science}, number = {4, Article number: 833}, publisher = {Springer Singapore}, address = {Singapore}, issn = {2661-8907}, doi = {10.1007/s42979-023-02256-4}, pages = {19 Seiten}, year = {2023}, abstract = {Companies often build their businesses based on product information and therefore try to automate the process of information extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of the different document types. This paper provides a distributed microservice architecture pattern that enables the automated generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated quality determination of each available pipeline and controls the integration of new microservices based on their impact on the business value. The introduced system enables fast prototyping of the newest approaches from research and supports companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated pipelines always meet defined business requirements when they come into productive use.}, language = {en} } @inproceedings{SteuerDankert2023, author = {Steuer-Dankert, Linda}, title = {A crazy little thing called sustainability}, series = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, booktitle = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, doi = {10.21427/9CQR-VC94}, pages = {11 Seiten}, year = {2023}, abstract = {Achieving the 17 Sustainable Development Goals (SDGs) set by the United Nations (UN) in 2015 requires global collaboration between different stakeholders. Industry, and in particular engineers who shape industrial developments, have a special role to play as they are confronted with the responsibility to holistically reflect sustainability in industrial processes. This means that, in addition to the technical specifications, engineers must also question the effects of their own actions on an ecological, economic and social level in order to ensure sustainable action and contribute to the achievement of the SDGs. However, this requires competencies that enable engineers to apply all three pillars of sustainability to their own field of activity and to understand the global impact of industrial processes. In this context, it is relevant to understand how industry already reflects sustainability and to identify competences needed for sustainable development.}, language = {en} } @article{LuftBremenLuft2023, author = {Luft, Angela and Bremen, Sebastian and Luft, Nils}, title = {A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning}, series = {Processes}, volume = {11}, journal = {Processes}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr11071968}, pages = {Artikel 1968}, year = {2023}, abstract = {There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly.}, language = {en} } @article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app13137610}, pages = {Artikel 7610}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} }