@article{HagenkampBlankeDoering2021, author = {Hagenkamp, Markus and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Thermoelectric building temperature control: a potential assessment}, series = {International Journal of Energy and Environmental Engineering}, volume = {13}, journal = {International Journal of Energy and Environmental Engineering}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s40095-021-00424-x}, pages = {241 -- 254}, year = {2021}, abstract = {This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants.}, language = {en} } @article{BlankeRegerDoeringetal.2021, author = {Blanke, Tobias and Reger, Vitali and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Kuhnhenne, Markus}, title = {Koaxiale Stahlenergiepf{\"a}hle}, series = {Stahlbau}, volume = {90. 2021}, journal = {Stahlbau}, number = {6}, publisher = {Wiley}, address = {Weinheim}, pages = {417 -- 424}, year = {2021}, abstract = {Ein entscheidender Teil der Energiewende ist die W{\"a}rmewende im Geb{\"a}udesektor. Ein Schl{\"u}sselelement sind hier W{\"a}rmepumpen. Diese ben{\"o}tigen eine W{\"a}rmequelle, der sie Energie entziehen k{\"o}nnen, um sie auf ein h{\"o}heres Temperaturniveau zu transformieren. Diese W{\"a}rmequelle kann bspw. das Erdreich sein, dessen W{\"a}rme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpf{\"a}hle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bez{\"u}glich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepf{\"a}hle bieten neben der W{\"a}rmegewinnung weitere Vorteile, da sie auch eine statische Funktion {\"u}bernehmen und r{\"u}ckstandsfrei zur{\"u}ckgebaut werden k{\"o}nnen. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepf{\"a}hle in zwei verschiedenen L{\"a}ngen mit vorhandenen g{\"a}ngigen Erdsonden verglichen werden k{\"o}nnen. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 \% und 148 \% der Stahlenergiepf{\"a}hle gegen{\"u}ber dem Stand der Technik abh{\"a}ngig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von {\"u}ber 100 \%. Es l{\"a}sst sich also signifikante Erdsondenl{\"a}nge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt.}, language = {de} } @article{HennesLaumann2021, author = {Hennes, Philipp and Laumann, J{\"o}rg}, title = {Ansatz der Drehbehinderung aus Koppelpfetten mit d{\"u}nnwandigen kaltgeformten Z-Profilen}, series = {Stahlbau}, volume = {90}, journal = {Stahlbau}, number = {3}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049}, doi = {10.1002/stab.202000104}, pages = {158 -- 168}, year = {2021}, language = {de} } @article{ErpicumCrookstonBombardellietal.2021, author = {Erpicum, Sebastien and Crookston, Brian M. and Bombardelli, Fabian and Bung, Daniel B. and Felder, Stefan and Mulligan, Sean and Oertel, Mario and Palermo, Michele}, title = {Hydraulic structures engineering: An evolving science in a changing world}, series = {Wires Water}, volume = {8}, journal = {Wires Water}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {2049-1948}, doi = {10.1002/wat2.1505}, year = {2021}, language = {en} } @article{ValeroSchalkoFriedrichetal.2021, author = {Valero, Daniel and Schalko, Isabella and Friedrich, Heide and Abad, Jorge D. and Bung, Daniel B. and Donchyts, Gennadii and Felder, Stefan and Ferreira, Rui M. L. and Hohermuth, Benjamin and Kramer, Matthias and Li, Danxun and Mendes, Luis and Moreno-Rodenas, Antonio and Nones, Michael and Paron, Paolo and Ruiz-Villanueva, Virginia and Wang, Ruo-Qian and Franca, Mario J.}, title = {Pathways towards democratization of hydro-environment observations and data}, series = {Iahr White Paper Series}, journal = {Iahr White Paper Series}, number = {1}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, pages = {1 -- 9}, year = {2021}, language = {en} }