@inproceedings{GrundAltherr2023, author = {Grund, Raphael M. and Altherr, Lena}, title = {Development of an open source energy disaggregation tool for the home automation platform Home Assistant}, series = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, booktitle = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-01-6}, doi = {10.33968/2023.02}, pages = {11 -- 20}, year = {2023}, abstract = {In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant.}, language = {en} } @inproceedings{LahrsKrisamHerrmann2023, author = {Lahrs, Lennart and Krisam, Pierre and Herrmann, Ulf}, title = {Envisioning a collaborative energy system planning platform for the energy transition at the district level}, series = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, booktitle = {ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems}, publisher = {Procedings of ECOS 2023}, doi = {10.52202/069564-0284}, pages = {3163 -- 3170}, year = {2023}, abstract = {Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core.}, language = {en} } @inproceedings{SchulteSchwagerNoureldinetal.2023, author = {Schulte, Jonas and Schwager, Christian and Noureldin, Kareem and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0148741}, pages = {9 Seiten}, year = {2023}, abstract = {The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further.}, language = {en} } @inproceedings{SchwagerAngeleSchwarzboezletal.2023, author = {Schwager, Christian and Angele, Florian and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Model predictive assistance for operational decision making in molten salt receiver systems}, series = {SolarPACES: Solar Power \& Chemical Energy Systems}, booktitle = {SolarPACES: Solar Power \& Chemical Energy Systems}, number = {2815 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4623-6}, issn = {1551-7616 (online)}, doi = {10.1063/5.0151514}, pages = {8 Seiten}, year = {2023}, abstract = {Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy.}, language = {en} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @inproceedings{HuelsenMulsowDabrowskietal.2023, author = {H{\"u}lsen, Benjamin and Mulsow, Niklas A. and Dabrowski, Adam and Brinkmann, Wiebke and G{\"u}tzlaff, Joel and Spies, Leon and Czupalla, Markus and Kirchner, Frank}, title = {Towards an autonomous micro rover with night survivability for lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, pages = {12 Seiten}, year = {2023}, abstract = {In Europe, efforts are underway to develop key technologies that can be used to explore the Moon and to exploit the resources available. This includes technologies for in-situ resource utilization (ISRU), facilitating the possibility of a future Moon Village. The Moon is the next step for humans and robots to exploit the use of available resources for longer term missions, but also for further exploration of the solar system. A challenge for effective exploration missions is to achieve a compact and lightweight robot to reduce launch costs and open up the possibility of secondary payload options. Current micro rover concepts are primarily designed to last for one day of solar illumination and show a low level of autonomy. Extending the lifetime of the system by enabling survival of the lunar night and implementing a high level of autonomy will significantly increase potential mission applications and the operational range. As a reference mission, the deployment of a micro rover in the equatorial region of the Moon is being considered. An overview of mission parameters and a detailed example mission sequence is given in this paper. The mission parameters are based on an in-depth study of current space agency roadmaps, scientific goals, and upcoming flight opportunities. Furthermore, concepts of the ongoing international micro rover developments are analyzed along with technology solutions identified for survival of lunar nights and a high system autonomy. The results provide a basis of a concise requirements set-up to allow dedicated system developments and qualification measures in the future.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @inproceedings{StarkBartelDitscheetal.2023, author = {Stark, Ralf and Bartel, Sebastian and Ditsche, Florian and Esch, Thomas}, title = {Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {9 Seiten}, year = {2023}, abstract = {Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain.}, language = {en} } @inproceedings{VladovaUllrichSultanowetal.2023, author = {Vladova, Gergana and Ullrich, Andr{\´e} and Sultanow, Eldar and Tobolla, Marinho and Sebrak, Sebastian and Czarnecki, Christian and Brockmann, Carsten}, title = {Visual analytics for knowledge management}, series = {INFORMATIK 2023 - Designing Futures: Zuk{\"u}nfte gestalten}, booktitle = {INFORMATIK 2023 - Designing Futures: Zuk{\"u}nfte gestalten}, publisher = {GI - Gesellschaft f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-731-9}, issn = {1617-5468}, doi = {10.18420/inf2023_187}, pages = {1851 -- 1870}, year = {2023}, abstract = {The management of knowledge in organizations considers both established long-term processes and cooperation in agile project teams. Since knowledge can be both tacit and explicit, its transfer from the individual to the organizational knowledge base poses a challenge in organizations. This challenge increases when the fluctuation of knowledge carriers is exceptionally high. Especially in large projects in which external consultants are involved, there is a risk that critical, company-relevant knowledge generated in the project will leave the company with the external knowledge carrier and thus be lost. In this paper, we show the advantages of an early warning system for knowledge management to avoid this loss. In particular, the potential of visual analytics in the context of knowledge management systems is presented and discussed. We present a project for the development of a business-critical software system and discuss the first implementations and results.}, language = {en} } @inproceedings{TreulingCzarneckiWolf2023, author = {Treuling, Clemens and Czarnecki, Christian and Wolf, Martin}, title = {Projekt WiLMo - Wirtschaftsinformatik Lehr- und Lernmodule}, series = {Angewandte Forschung in der Wirtschaftsinformatik 2023 : Tagungsband zur 36. AKWI-Jahrestagung}, booktitle = {Angewandte Forschung in der Wirtschaftsinformatik 2023 : Tagungsband zur 36. AKWI-Jahrestagung}, pages = {161 -- 169}, year = {2023}, abstract = {Die potenziellen Auswirkungen der Digitalisierung auf die Lehre sind seit langem Gegenstand ausf{\"u}hrlicher Diskussionen innerhalb der Wirtschaftsinformatik (WI) (z. B. in Auth et al. 2021, Barton et al. 2019, Klotz et al. 2019). Nicht zuletzt der in nahezu allen Wirtschaftszweigen bestehende Mangel an qualifizierten Fachkr{\"a}ften lenkt den Diskurs auf einen verbesserten Zugang zu Bildung und gleichen Bildungschancen. Aus dieser Vision heraus und dem Schub der Digitalisierung entstehen Bildungskonzepte wie Open Educational Resources (OER), die gesellschaftlichen Problemen, wie dem des Fachkr{\"a}ftemangels, entgegenwirken sollen. Im Rahmen dieses Kurzbeitrags wird das Projekt WiLMo - "Wirtschaftsinformatik Lehr- und Lernmodule" vorgestellt. WiLMo wird im Rahmen von OERContent.nrw unter Beteiligung von sechs Hochschulen entwickelt und gef{\"o}rdert. Alle Projektbeteiligten arbeiten gemeinsam daran, einheitliche digitale Lehr- und Lernmaterialien im OER-Format f{\"u}r die Kernmodule der Wirtschaftsinformatik zu entwickeln und in garantiert hoher Qualit{\"a}t zur Verf{\"u}gung zu stellen.}, language = {de} } @inproceedings{BungLangohrWaldenberger2023, author = {Bung, Daniel Bernhard and Langohr, Phillip and Waldenberger, Lisa}, title = {Influence of cycle number in CFD studies of labyrinth weirs}, series = {Proceedings of the 40th IAHR World Congress (Vienna, 2023)}, booktitle = {Proceedings of the 40th IAHR World Congress (Vienna, 2023)}, editor = {Habersack, Helmut and Tritthart, Michael}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-833476-1-5}, issn = {L 2521-7119 (online)}, doi = {10.3850/978-90-833476-1-5_iahr40wc-p0531-cd}, year = {2023}, abstract = {The major advantage of labyrinth weirs over linear weirs is hydraulic efficiency. In hydraulic modeling efforts, this strength contrasts with limited pump capacity as well as limited computational power for CFD simulations. For the latter, reducing the number of investigated cycles can significantly reduce necessary computational time. In this study, a labyrinth weir with different cycle numbers was investigated. The simulations were conducted in FLOW-3D HYDRO as a Large Eddy Simulation. With a mean deviation of 1.75 \% between simulated discharge coefficients and literature design equations, a reasonable agreement was found. For downstream conditions, overall consistent results were observed as well. However, the orientation of labyrinth weirs with a single cycle should be chosen carefully under consideration of the individual research purpose.}, language = {en} } @inproceedings{EggertSchadeBroehletal.2024, author = {Eggert, Mathias and Schade, Maximilian and Br{\"o}hl, Florian and Moriz, Alexander}, title = {Generating synthetic LiDAR point cloud data for object detection using the Unreal Game Engine}, series = {Design Science Research for a Resilient Future (DESRIST 2024)}, booktitle = {Design Science Research for a Resilient Future (DESRIST 2024)}, editor = {Mandviwalla, Munir and S{\"o}llner, Matthias and Tuunanen, Tuure}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-61174-2 (Print)}, doi = {10.1007/978-3-031-61175-9_20}, pages = {295 -- 309}, year = {2024}, abstract = {Object detection based on artificial intelligence is ubiquitous in today's computer vision research and application. The training of the neural networks for object detection requires large and high-quality datasets. Besides datasets based on image data, datasets derived from point clouds offer several advantages. However, training datasets are sparse and their generation requires a lot of effort, especially in industrial domains. A solution to this issue offers the generation of synthetic point cloud data. Based on the design science research method, the work at hand proposes an approach and its instantiation for generating synthetic point cloud data based on the Unreal Engine. The point cloud quality is evaluated by comparing the synthetic cloud to a real-world point cloud. Within a practical example the applicability of the Unreal Game engine for synthetic point cloud generation could be successfully demonstrated.}, language = {de} } @inproceedings{SimsekKrauseEngelmann2024, author = {Simsek, Beril and Krause, Hans-Joachim and Engelmann, Ulrich M.}, title = {Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {27 -- 28}, year = {2024}, abstract = {Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs' flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation.}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} } @inproceedings{SherelkhanAlibekova2024, author = {Sherelkhan, Dinara and Alibekova, Alina}, title = {EEM spectroscopy characterization of humic substances of biomedical importance}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {31 -- 32}, year = {2024}, abstract = {Humic substances possess distinctive chemical features enabling their use in many advanced applications, including biomedical fields. No chemicals in nature have the same combination of specific chemical and biological properties as humic substances. Traditional medicine and modern research have demonstrated that humic substances from different sources possess immunomodulatory and anti-inflammatory properties, which makes them suitable for the prevention and treatment of chronic dermatoses, allergic rhinitis, atopic dermatitis, and other conditions characterized by inflammatory and allergic responses [1-4]. The use of humic compounds as agentswith antifungal and antiviral properties shows great potential [5-7].}, language = {en} } @inproceedings{Tepecik2024, author = {Tepecik, Atakan}, title = {AstroBioLab: Review of technical and bioanalytical approaches}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {33 -- 34}, year = {2024}, abstract = {This study presents the concept of AstroBioLab, an autonomous astrobiological field laboratory tailored for the exploration of (sub)glacial habitats. AstroBioLab is an integral component of the TRIPLE (Technologies for Rapid Ice Penetration and subglacial Lake Exploration) DLR-funded project, aimed at advancing astrobiology research through the development and deployment of innovative technologies. AstroBioLab integrates diverse measurement techniques such as fluorescence microscopy, DNA sequencing and fluorescence spectrometry, while leveraging microfluidics for efficient sample delivery and preparation.}, language = {en} } @inproceedings{WittigRuettersBragard2024, author = {Wittig, M. and R{\"u}tters, Ren{\´e} and Bragard, Michael}, title = {Application of RL in control systems using the example of a rotatory inverted pendulum}, series = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, booktitle = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-02-3}, doi = {10.33968/2024.53}, pages = {241 -- 248}, year = {2024}, abstract = {In this paper, the use of reinforcement learning (RL) in control systems is investigated using a rotatory inverted pendulum as an example. The control behavior of an RL controller is compared to that of traditional LQR and MPC controllers. This is done by evaluating their behavior under optimal conditions, their disturbance behavior, their robustness and their development process. All the investigated controllers are developed using MATLAB and the Simulink simulation environment and later deployed to a real pendulum model powered by a Raspberry Pi. The RL algorithm used is Proximal Policy Optimization (PPO). The LQR controller exhibits an easy development process, an average to good control behavior and average to good robustness. A linear MPC controller could show excellent results under optimal operating conditions. However, when subjected to disturbances or deviations from the equilibrium point, it showed poor performance and sometimes instable behavior. Employing a nonlinear MPC Controller in real time was not possible due to the high computational effort involved. The RL controller exhibits by far the most versatile and robust control behavior. When operated in the simulation environment, it achieved a high control accuracy. When employed in the real system, however, it only shows average accuracy and a significantly greater performance loss compared to the simulation than the traditional controllers. With MATLAB, it is not yet possible to directly post-train the RL controller on the Raspberry Pi, which is an obstacle to the practical application of RL in a prototyping or teaching setting. Nevertheless, RL in general proves to be a flexible and powerful control method, which is well suited for complex or nonlinear systems where traditional controllers struggle.}, language = {en} } @inproceedings{AltherrDoeringFrauenrathetal.2024, author = {Altherr, Lena and D{\"o}ring, Bernd and Frauenrath, Tobias and Groß, Rolf and Mohan, Nijanthan and Oyen, Marc and Schnittcher, Lukas and Voß, Norbert}, title = {DiggiTwin: ein interdisziplin{\"a}res Projekt zur Nutzung digitaler Zwillinge auf dem Weg zu einem klimaneutralen Geb{\"a}udebestand}, series = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, booktitle = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-02-3}, doi = {10.33968/2024.67}, pages = {341 -- 346}, year = {2024}, abstract = {Im Hinblick auf die Klimaziele der Bundesrepublik Deutschland konzentriert sich das Projekt Diggi Twin auf die nachhaltige Geb{\"a}udeoptimierung. Grundlage f{\"u}r eine ganzheitliche Geb{\"a}ude{\"u}berwachung und -optimierung bildet dabei die Digitalisierung und Automation im Sinne eines Smart Buildings. Das interdisziplin{\"a}re Projekt der FH Aachen hat das Ziel, ein bestehendes Hochschulgeb{\"a}ude und einen Neubau an klimaneutrale Standards anzupassen. Im Rahmen des Projekts werden bekannte Verfahren, wie das Building Information Modeling (BIM), so erweitert, dass ein digitaler Geb{\"a}udezwilling entsteht. Dieser kann zur Optimierung des Geb{\"a}udebetriebs herangezogen werden, sowie als Basis f{\"u}r eine Erweiterung des Bewertungssystems Nachhaltiges Bauen (BNB) dienen. Mithilfe von Sensortechnologie und k{\"u}nstlicher Intelligenz kann so ein pr{\"a}zises Monitoring wichtiger Geb{\"a}udedaten erfolgen, um ungenutzte Energieeinsparpotenziale zu erkennen und zu nutzen. Das Projekt erforscht und setzt methodische Erkenntnisse zu BIM und digitalen Geb{\"a}udezwillingen praxisnah um, indem es spezifische Fragen zur Energie- und Ressourceneffizienz von Geb{\"a}uden untersucht und konkrete L{\"o}sungen f{\"u}r die Geb{\"a}udeoptimierung entwickelt.}, language = {de} } @inproceedings{KramerBragardRitzetal.2024, author = {Kramer, Pia and Bragard, Michael and Ritz, Thomas and Ferfer, Ute and Schiffers, Tim}, title = {Visualizing, Enhancing and Predicting Students' Success through ECTS Monitoring}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578652}, pages = {5 Seiten}, year = {2024}, abstract = {This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy.}, language = {en} } @inproceedings{RuettersBragardDolls2024, author = {R{\"u}tters, Ren{\´e} and Bragard, Michael and Dolls, Sarah}, title = {The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578937}, pages = {5 Seiten}, year = {2024}, abstract = {This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents.}, language = {en} } @inproceedings{BeckerBragard2024, author = {Becker, Tim and Bragard, Michael}, title = {Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578902}, pages = {8 Seiten}, year = {2024}, abstract = {After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} }