@book{YoshinobuSchoening2020, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressing and chemical imaging technologies for electrochemical sensing}, editor = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, publisher = {MDPI}, address = {Basel}, isbn = {978-3-03943-029-1}, doi = {10.3390/books978-3-03943-029-1}, pages = {122 Pages}, year = {2020}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, booktitle = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, language = {en} } @article{Stulpe2020, author = {Stulpe, Werner}, title = {Pairwise coexistence of effects versus coexistence}, series = {Journal of Physics: Conference Series}, volume = {1638}, journal = {Journal of Physics: Conference Series}, number = {012004}, publisher = {IOP}, address = {Bristol}, issn = {1742-6596}, doi = {10.1088/1742-6596/1638/1/012004}, pages = {1 -- 21}, year = {2020}, language = {en} } @article{DantismRoehlenDahmenetal.2020, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Dahmen, Markus and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth}, series = {Sensors and Actuators B: Chemical}, volume = {320}, journal = {Sensors and Actuators B: Chemical}, number = {Art. 128232}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128232}, year = {2020}, abstract = {As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated.}, language = {en} } @article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2020, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Meskemper, Joshua and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants}, series = {European Journal of Applied Physiology}, journal = {European Journal of Applied Physiology}, number = {120}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6327}, doi = {10.1007/s00421-020-04373-x}, pages = {1403 -- 1415}, year = {2020}, abstract = {Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.}, language = {en} } @inproceedings{PohleFroehlichDalitzRichteretal.2020, author = {Pohle-Fr{\"o}hlich, Regina and Dalitz, Christoph and Richter, Charlotte and Hahnen, Tobias and St{\"a}udle, Benjamin and Albracht, Kirsten}, title = {Estimation of muscle fascicle orientation in ultrasonic images}, series = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, booktitle = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, pages = {79 -- 86}, year = {2020}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @article{VoegeleGrajewskiGovorukhaetal.2020, author = {V{\"o}gele, Stefan and Grajewski, Matthias and Govorukha, Kristina and R{\"u}bbelke, Dirk}, title = {Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development}, series = {Applied Energy}, volume = {264}, journal = {Applied Energy}, number = {Article number: 114633}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2020.114633}, year = {2020}, abstract = {The steel industry in the European Union (EU), important for the economy as a whole, faces various challenges. These are inter alia volatile prices for relevant input factors, uncertainties concerning the regulation of CO₂-emissions and market shocks caused by the recently introduced additional import duties in the US, which is an important sales market. We examine primary and secondary effects of these challenges on the steel industry in the EU and their impacts on European and global level. Developing and using a suitable meta-model, we analyze the competitiveness of key steel producing countries with respect to floor prices depending on selected cost factors and draw conclusions on the impacts in the trade of steel on emissions, energy demand, on the involvement of developing countries in the value chain as well on the need for innovations to avoid relocations of production. Hence, our study contributes to the assessment of sustainable industrial development, which is aimed by the Sustainability Development Goal "Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation countries". By applying information on country-specific Human Development Indexes (reflecting aspects of life expectancy, education, and per capita income), we show that relocating energy-intensive industries from the EU may not only increase global energy demand and CO₂-emissions, but may also be to the disadvantage of developing countries.}, language = {en} } @article{StreeseKotliarDeiserothetal.2020, author = {Streese, Lukas and Kotliar, Konstantin and Deiseroth, Arne and Infanger, Denis and Gugleta, Konstantin and Schmaderer, Christoph and Hanssen, Henner}, title = {Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial}, series = {Scandinavian Journal of Medicine and Science in Sports}, volume = {30}, journal = {Scandinavian Journal of Medicine and Science in Sports}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1600-0838}, doi = {10.1111/sms.13560}, pages = {272 -- 280}, year = {2020}, abstract = {The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1\%, post: 3.0 ± 2.2\%, P = .018) and AFarea (pre: 32.6 ± 28.4\%*s, post: 37.7 ± 30.6\%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8\%, post: 2.9 ± 1.8\%, P = .254; AFarea, pre: 41.6 ± 28.5\%*s, post: 37.8 ± 27.0\%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.}, language = {en} } @article{HamouKotliarTanetal.2020, author = {Hamou, Hussam Aldin and Kotliar, Konstantin and Tan, Sonny Kian and Weiß, Christel and Blume, Christian and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Surgical nuances and placement of subgaleal drains for supratentorial procedures—a prospective analysis of efficacy and outcome in 150 craniotomies}, series = {Acta Neurochirurgica}, volume = {2020}, journal = {Acta Neurochirurgica}, number = {162}, publisher = {Springer Nature}, address = {Cham}, issn = {0942-0940}, doi = {10.1007/s00701-019-04196-6}, pages = {729 -- 736}, year = {2020}, abstract = {Background For supratentorial craniotomy, surgical access, and closure technique, including placement of subgaleal drains, may vary considerably. The influence of surgical nuances on postoperative complications such as cerebrospinal fluid leakage or impaired wound healing overall remains largely unclear. With this study, we are reporting our experiences and the impact of our clinical routines on outcome in a prospectively collected data set. Method We prospectively observed 150 consecutive patients undergoing supratentorial craniotomy and recorded technical variables (type/length of incision, size of craniotomy, technique of dural and skin closure, type of dressing, and placement of subgaleal drains). Outcome variables (subgaleal hematoma/CSF collection, periorbital edema, impairment of wound healing, infection, and need for operative revision) were recorded at time of discharge and at late follow-up. Results Early subgaleal fluid collection was observed in 36.7\% (2.8\% at the late follow-up), and impaired wound healing was recorded in 3.3\% of all cases, with an overall need for operative revision of 6.7\%. Neither usage of dural sealants, lack of watertight dural closure, and presence of subgaleal drains, nor type of skin closure or dressing influenced outcome. Curved incisions, larger craniotomy, and tumor size, however, were associated with an increase in early CSF or hematoma collection (p < 0.0001, p = 0.001, p < 0.01 resp.), and larger craniotomy size was associated with longer persistence of subgaleal fluid collections (p < 0.05). Conclusions Based on our setting, individual surgical nuances such as the type of dural closure and the use of subgaleal drains resulted in a comparable complication rate and outcome. Subgaleal fluid collections were frequently observed after supratentorial procedures, irrespective of the closing technique employed, and resolve spontaneously in the majority of cases without significant sequelae. Our results are limited due to the observational nature in our single-center study and need to be validated by supportive prospective randomized design.}, language = {en} } @article{MennickenPeterKaulenetal.2020, author = {Mennicken, Max and Peter, Sophia K. and Kaulen, Corinna and Simon, Ulrich and Karth{\"a}user, Silvia}, title = {Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices}, series = {The Journal of Physical Chemistry C}, volume = {124}, journal = {The Journal of Physical Chemistry C}, number = {8}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1932-7455}, doi = {10.1021/acs.jpcc.9b11716}, pages = {4881 -- 4889}, year = {2020}, abstract = {Transition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 30² nm² inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent.}, language = {en} } @article{JildehKirchnerOberlaenderetal.2020, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Vahidpour, Farnoosh and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide}, series = {Sensor and Actuators A: Physical}, volume = {303}, journal = {Sensor and Actuators A: Physical}, number = {111691}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2019.111691}, year = {2020}, abstract = {Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4\% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues.}, language = {en} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} } @article{DigelKernGeenenetal.2020, author = {Digel, Ilya and Kern, Inna and Geenen, Eva-Maria and Akimbekov, Nuraly}, title = {Dental plaque removal by ultrasonic toothbrushes}, series = {dentistry journal}, volume = {8}, journal = {dentistry journal}, number = {28}, publisher = {MDPI}, address = {Basel}, issn = {2304-6767}, doi = {10.3390/dj8010028}, pages = {1 -- 13}, year = {2020}, abstract = {With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness.}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{WeldenSchoeningWagneretal.2020, author = {Welden, Rene and Sch{\"o}ning, Michael Josef and Wagner, Patrick H. and Wagner, Torsten}, title = {Light-Addressable Electrodes for Dynamic and Flexible Addressing of Biological Systems and Electrochemical Reactions}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20061680}, pages = {Artikel 1680}, year = {2020}, abstract = {In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor-electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types.}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @article{DadfarCamozziDarguzyteetal.2020, author = {Dadfar, Dryed Mohammadali and Camozzi, Denise and Darguzyte, Milita and Roemhild, Karolin and Varvar{\`a}, Paola and Metselaar, Josbert and Banala, Srinivas and Straub, Marcel and G{\"u}ver, Nihan and Engelmann, Ulrich M. and Slabu, Ioana and Buhl, Miriam and Leusen, Jan van and K{\"o}gerler, Paul and Hermanns-Sachweh, Benita and Schulz, Volkmar and Kiessling, Fabian and Lammers, Twan}, title = {Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance}, series = {Journal of Nanobiotechnology}, volume = {18}, journal = {Journal of Nanobiotechnology}, number = {Article number 22}, publisher = {Nature Portfolio}, issn = {1477-3155}, doi = {10.1186/s12951-020-0580-1}, pages = {1 -- 13}, year = {2020}, abstract = {Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.}, language = {en} } @incollection{SavitskayaKistaubayevaAkimbekovetal.2020, author = {Savitskaya, Irina S. and Kistaubayeva, Aida S. and Akimbekov, Nuraly and Digel, Ilya and Shokatayeva, Dina and Zhubanova, Azhar Achmet}, title = {Prospective Use of Probiotics Immobilized on Sorbents with Nanostructured Surfaces}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-12}, pages = {229 -- 267}, year = {2020}, abstract = {Activated carbons are known as excellent adsorbents. Their applications include the adsorptive removal of color, odor, taste, undesirable organic and inorganic pollutants from drinking and waste water; air purification in inhabited spaces; purification of many chemicals, pharmaceutical products and many others. This chapter elucidates the role of normal microflora in the maintenance of human health and presents materials on possible clinical displays of microecological infringements and ways of their correction. It presents new developments concerning new probiotics with immobilized Lactobacillus and Bacillus. The chapter considers the mechanisms of the intestine disbacteriosis correction by sorbed probiotics. It demonstrates the advantages and creation prospects of immobilized probiotics developed on the basis of carbonized rice husk. There are great prospects for the development of medical biotechnology due to use of carbon sorbents with a nanostructured surface. Microbial communities form a biocenosis of the biotope and together with the host organism create permanent or temporary ecosystems.}, language = {en} } @incollection{ZhubanovaMansurovDigel2020, author = {Zhubanova, Azhar A. and Mansurov, Zulkhair A. and Digel, Ilya}, title = {Use of Advanced Nanomaterials for Bioremediation of Contaminated Ecosystems}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-18}, pages = {353 -- 378}, year = {2020}, abstract = {This chapter shows that nanomaterials obtained by high-temperature carbonization of inexpensive plant raw material such as rice husk, grape seeds, and walnut shells can serve as a basis for the production of highly efficient microbial drugs, biodestructors, biosorbents, and biocatalysts, which are promising for the remediation of the ecosystem contaminated with heavy and radioactive metals, oil and oil products. A strong interest in engineering zymology is dictated by the necessity to address the issues of monitoring enzymatic processes, treatment, and diagnosis of a number of common human diseases, environmental pollution, quality control of pharmaceuticals and food. Nanomaterials obtained by high-temperature carbonization of cheap plant raw material such as-rice husks, grape seeds and walnut shells, can serve as a basis for creating of highly effective microbial preparations-biodestructors, biosorbents and biocatalysts, which are promising for the use of contaminated ecosystems, and for restoration of human intestine microecology.}, language = {en} } @article{PogorelovaRogachevDigeletal.2020, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Digel, Ilya and Chernigova, Svetlana and Nardin, Dmitry}, title = {Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties}, series = {Materials}, volume = {13}, journal = {Materials}, number = {12}, publisher = {MDPI}, address = {Basel}, isbn = {1996-1944}, doi = {10.3390/ma13122849}, pages = {1 -- 16}, year = {2020}, abstract = {Bacterial cellulose (BC) is a promising material for biomedical applications due to its unique properties such as high mechanical strength and biocompatibility. This article describes the microbiological synthesis, modification, and characterization of the obtained BC-nanocomposites originating from symbiotic consortium Medusomyces gisevii. Two BC-modifications have been obtained: BC-Ag and BC-calcium phosphate (BC-Ca3(PO4)2). Structure and physicochemical properties of the BC and its modifications were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and infrared Fourier spectroscopy as well as by measurements of mechanical and water holding/absorbing capacities. Topographic analysis of the surface revealed multicomponent thick fibrils (150-160 nm in diameter and about 15 µm in length) constituted by 50-60 nm nanofibrils weaved into a left-hand helix. Distinctive features of Ca-phosphate-modified BC samples were (a) the presence of 500-700 nm entanglements and (b) inclusions of Ca3(PO4)2 crystals. The samples impregnated with Ag nanoparticles exhibited numerous roundish inclusions, about 110 nm in diameter. The boundaries between the organic and inorganic phases were very distinct in both cases. The Ag-modified samples also showed a prominent waving pattern in the packing of nanofibrils. The obtained BC gel films possessed water-holding capacity of about 62.35 g/g. However, the dried (to a constant mass) BC-films later exhibited a low water absorption capacity (3.82 g/g). It was found that decellularized BC samples had 2.4 times larger Young's modulus and 2.2 times greater tensile strength as compared to dehydrated native BC films. We presume that this was caused by molecular compaction of the BC structure.}, language = {en} } @article{MoratFaudeHanssenetal.2020, author = {Morat, Mareike and Faude, Oliver and Hanssen, Henner and Ludyga, Sebastian and Zacher, Jonas and Eibl, Angi and Albracht, Kirsten and Donath, Lars}, title = {Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17061853}, pages = {1 -- 14}, year = {2020}, abstract = {Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations.}, language = {en} } @phdthesis{Bronder2020, author = {Bronder, Thomas}, title = {Label-free detection of tuberculosis DNA with capacitive field-effect biosensors}, publisher = {Philipps-Universit{\"a}t Marburg}, address = {Marburg}, doi = {10.17192/z2021.0056}, pages = {X, 162 S}, year = {2020}, language = {en} } @incollection{MansurovJandosovChenchiketal.2020, author = {Mansurov, Zulkhair A. and Jandosov, Jakpar and Chenchik, D. and Azat, Seitkhan and Savitskaya, Irina S. and Kistaubaeva, Aida and Akimbekov, Nuraly and Digel, Ilya and Zhubanova, Azhar Achmet}, title = {Biocomposite Materials Based on Carbonized Rice Husk in Biomedicine and Environmental Applications}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing Pte. Ltd.}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-2}, pages = {3 -- 32}, year = {2020}, abstract = {This chapter describes the prospects for biomedical and environmental engineering applications of heterogeneous materials based on nanostructured carbonized rice husk. Efforts in engineering enzymology are focused on the following directions: development and optimization of immobilization methods leading to novel biotechnological and biomedical applications; construction of biocomposite materials based on individual enzymes, multi-enzyme complexes and whole cells, targeted on realization of specific industrial processes. Molecular biological and biochemical studies on cell adhesion focus predominantly on identification, isolation and structural analysis of attachment-responsible biological molecules and their genetic determinants. The chapter provides a short overview of applications of the biocomposite materials based of nanostructured carbonized adsorbents. It emphasizes that further studies and better understanding of the interactions between CNS and microbial cells are necessary. The future use of living cells as biocatalysts, especially in the environmental field, needs more systematic investigations of the microbial adsorption phenomenon.}, language = {en} } @incollection{AkimbekovZhanadilovnaUalievaetal.2020, author = {Akimbekov, Nuraly and Zhanadilovna, Abdieva G. and Ualieva, Perizat S. and Abaihanovna, Zhusipova D. and Digel, Ilya and Savitskaya, Irina S. and Zhubanova, Azhar Achmet}, title = {Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-11}, pages = {211 -- 228}, year = {2020}, abstract = {The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on partly not identically distributed data}, series = {Communications in Statistics - Theory and Methods}, volume = {51}, journal = {Communications in Statistics - Theory and Methods}, number = {12}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-415X}, doi = {10.1080/03610926.2020.1805767}, pages = {4006 -- 4028}, year = {2020}, abstract = {The established Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is investigated for partly not identically distributed data. Surprisingly, it turns out that the statistic has the well-known distribution-free limiting null distribution of the classical criterion under standard regularity conditions. An application is testing goodness-of-fit for the regression function in a non parametric random effects meta-regression model, where the consistency is obtained as well. Simulations investigate size and power of the approach for small and moderate sample sizes. A real data example based on clinical trials illustrates how the test can be used in applications.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Testing marginal homogeneity of a continuous bivariate distribution with possibly incomplete paired data}, series = {Metrika}, volume = {2020}, journal = {Metrika}, number = {83}, publisher = {Springer}, issn = {1435-926X}, doi = {10.1007/s00184-019-00742-5}, pages = {437 -- 465}, year = {2020}, abstract = {We discuss the testing problem of homogeneity of the marginal distributions of a continuous bivariate distribution based on a paired sample with possibly missing components (missing completely at random). Applying the well-known two-sample Cr{\´a}mer-von-Mises distance to the remaining data, we determine the limiting null distribution of our test statistic in this situation. It is seen that a new resampling approach is appropriate for the approximation of the unknown null distribution. We prove that the resulting test asymptotically reaches the significance level and is consistent. Properties of the test under local alternatives are pointed out as well. Simulations investigate the quality of the approximation and the power of the new approach in the finite sample case. As an illustration we apply the test to real data sets.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Rothman-Woodroofe symmetry test statistic revisited}, series = {Computational Statistics \& Data Analysis}, volume = {2020}, journal = {Computational Statistics \& Data Analysis}, number = {142}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9473}, doi = {10.1016/j.csda.2019.106837}, pages = {Artikel 106837}, year = {2020}, abstract = {The Rothman-Woodroofe symmetry test statistic is revisited on the basis of independent but not necessarily identically distributed random variables. The distribution-freeness if the underlying distributions are all symmetric and continuous is obtained. The results are applied for testing symmetry in a meta-analysis random effects model. The consistency of the procedure is discussed in this situation as well. A comparison with an alternative proposal from the literature is conducted via simulations. Real data are analyzed to demonstrate how the new approach works in practice.}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} }