@article{RauppSchmittWalzetal.2018, author = {Raupp, Sebastian M. and Schmitt, Marcel and Walz, Anna-Lena and Diehm, Ralf and Hummel, Helga and Scharfer, Philip and Schabel, Wilhelm}, title = {Slot die stripe coating of low viscous fluids}, series = {Journal of Coatings Technology and Research}, volume = {15}, journal = {Journal of Coatings Technology and Research}, number = {5}, publisher = {Springer}, issn = {1935-3804}, doi = {10.1007/s11998-017-0039-y}, pages = {899 -- 911}, year = {2018}, abstract = {Slot die coating is applied to deposit thin and homogenous films in roll-to-roll and sheet-to-sheet applications. The critical step in operation is to choose suitable process parameters within the process window. In this work, we investigate an upper limit for stripe coatings. This maximum film thickness is characterized by stripe merging which needs to be avoided in a stable process. It is shown that the upper limit reduces the process window for stripe coatings to a major extent. As a result, stripe coatings at large coating gaps and low viscosities are only possible for relatively thick films. Explaining the upper limit, a theory of balancing the side pressure in the gap region in the cross-web direction has been developed.}, language = {en} } @article{EckertRudolphGuoetal.2018, author = {Eckert, Alexander and Rudolph, Tobias and Guo, Jiaqi and Mang, Thomas and Walther, Andreas}, title = {Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function}, series = {Advanced Materials}, volume = {30}, journal = {Advanced Materials}, number = {32}, publisher = {Wiley-VCH}, doi = {10.1002/adma.201802477}, pages = {Article number 1802477}, year = {2018}, abstract = {Synthetic mimics of natural high-performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre-mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre-mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre-mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt\%). Tailored interactions enable exceptional combinations of ductility (close to 50\% strain) and toughness (up to 27.5 MJ m⁻³). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @incollection{ArtmannMeruvuKizildagetal.2018, author = {Artmann, Gerhard and Meruvu, Haritha and Kizildag, Sefa and Temiz Artmann, Ayseg{\"u}l}, title = {Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_7}, pages = {157 -- 192}, year = {2018}, abstract = {Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative "CellDrum technology" was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology.}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @misc{RossJonesTeumerCapitainetal.2018, author = {Ross-Jones, J. and Teumer, T. and Capitain, C. and Tippk{\"o}tter, Nils and Krause, M. J. and Methner, F.-J. and R{\"a}dle, M.}, title = {Analytical methods for in-line characterization of beer haze}, series = {Trends in Brewing}, journal = {Trends in Brewing}, year = {2018}, abstract = {In most beers, producers strive to minimize haze to maximize visual appeal. To detect the formation of particulates, a measurement system for sub-micron particles is required. Beer haze is naturally occurring, composed of protein or polyphenol particles; in their early stage of growth their size is smaller than 2 µm. Microscopy analysis is time and resource intensive; alternatively, backscattering is an inexpensive option for detecting particle sizes of interest.}, language = {en} } @article{TeumerCapitainRossJonesetal.2018, author = {Teumer, T. and Capitain, C. and Ross-Jones, J. and Tippk{\"o}tter, Nils and R{\"a}dle, M. and Methner, F.-J.}, title = {In-line Haze Monitoring Using a Spectrally Resolved Back Scattering Sensor}, series = {BrewingScience}, volume = {71}, journal = {BrewingScience}, number = {5/6}, publisher = {Fachverlag Hans Carl}, address = {N{\"u}rnberg}, issn = {1613-2041}, pages = {49 -- 55}, year = {2018}, abstract = {In the present work an optical sensor in combination with a spectrally resolved detection device for in-line particle-size-monitoring for quality control in beer production is presented. The principle relies on the size and wavelength dependent backscatter of growing particles in fluids. Measured interference structures of backscattered light are compared with calculated theoretical values, based on Mie-Theory, and fitted with a linear least square method to obtain particle size distributions. For this purpose, a broadband light source in combination with a process-CCD-spectrometer (charge ? coupled device spectrometer) and process adapted fiber optics are used. The goal is the development of an easy and flexible measurement device for in-line-monitoring of particle size. The presented device can be directly installed in product fill tubes or vessels, follows CIP- (cleaning in place) and removes the need of sample taking. A proof of concept and preliminary results, measuring protein precipitation, are presented.}, language = {en} } @incollection{WagemannTippkoetter2018, author = {Wagemann, Kurt and Tippk{\"o}tter, Nils}, title = {Biorefineries: a short introduction}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_4}, pages = {1 -- 11}, year = {2018}, abstract = {The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown.}, language = {en} } @article{EngelBayerHoltmannetal.2019, author = {Engel, Mareike and Bayer, Hendrik and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Flavin secretion of Clostridium acetobutylicum in a bioelectrochemical system - Is an iron limitation involved?}, series = {Bioelectrochemistry}, journal = {Bioelectrochemistry}, number = {In Press, Accepted Manuscript}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2019.05.014}, year = {2019}, language = {en} } @article{EngelGemuendeHoltmannetal.2019, author = {Engel, Mareike and Gem{\"u}nde, Andre and Holtmann, Dirk and M{\"u}ller-Renno, Christine and Ziegler, Christiane and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Clostridium acetobutylicum's connecting world: cell appendage formation in bioelectrochemical systems}, series = {ChemElectroChem}, volume = {7}, journal = {ChemElectroChem}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901656}, pages = {414 -- 420}, year = {2019}, abstract = {Bacterial cell appendix formation supports cell-cell interaction, cell adhesion and cell movement. Additionally, in bioelectrochemical systems (BES), cell appendages have been shown to participate in extracellular electron transfer. In this work, the cell appendix formation of Clostridium acetobutylicum in biofilms of a BES are imaged and compared with conventional biofilms. Under all observed conditions, the cells possess filamentous appendages with a higher number and density in the BES. Differences in the amount of extracellular polymeric substance in the biofilms of the electrodes lead to the conclusion that the cathode can be used as electron donor and the anode as electron acceptor by C. acetobutylicum. When using conductive atomic force microscopy, a current response of about 15 nA is found for the cell appendages from the BES. This is the first report of conductivity for clostridial cell appendices and represents the basis for further studies on their role for biofilm formation and electron transfer.}, language = {en} } @inproceedings{KazukiKobayashiHirabayashietal.2019, author = {Kazuki, Yasuhiro and Kobayashi, Kaoru and Hirabayashi, Masumi and Abe, Satoshi and Kajitani, Naoyo and Kazuki, Kanoko and Takehara, Shoko and Takiguchi, Masato and Satoh, Daisuke and Kuze, Jiro and Sakuma, Tetsushi and Kaneko, Takehito and Mashimo, Tomoji and Osamura, Minori and Hashimoto, Mari and Wakatsuki, Riko and Hirashima, Rika and Fujiwara, Ryoichi and Deguchi, Tsuneo and Kurihara, Atsushi and Tsukazaki, Yasuko and Senda, Naoto and Yamamoto, Takashi and Scheer, Nico and Oshimura, Mitsuo}, title = {Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism}, series = {PNAS Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, booktitle = {PNAS Proceedings of the National Academy of Sciences of the United States of America}, number = {8}, issn = {1091-6490}, doi = {10.1073/pnas.1808255116}, pages = {3072 -- 3081}, year = {2019}, language = {en} } @article{Delaittre2019, author = {Delaittre, Guillaume}, title = {Telechelic Poly(2-Oxazoline)s}, series = {European Polymer Journal}, journal = {European Polymer Journal}, number = {In Press, Journal Pre-proof, 109281}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2019.109281}, year = {2019}, language = {en} } @inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{SchiedermeierRettnerHeilmannetal.2019, author = {Schiedermeier, Maximilian and Rettner, Cornelius and Heilmann, Marcel and Schneider, Felix and Marz, Martin}, title = {Interference of automotive HV-DC-systems by traction voltage-source-inverters (VSI)}, series = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, journal = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, publisher = {IEEE}, address = {New York}, doi = {10.1109/ITEC-India48457.2019.ITECINDIA2019-37}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{KapelyukhHendersonScheeretal.2019, author = {Kapelyukh, Yury and Henderson, Colin James and Scheer, Nico and Rode, Anja and Wolf, Charles Roland}, title = {Defining the contribution of CYP1A1 and CYP1A2 to drug metabolism using humanized CYP1A1/1A2 and Cyp1a1/Cyp1a2 KO mice}, series = {Drug Metabolism and Disposition}, journal = {Drug Metabolism and Disposition}, number = {Early view}, doi = {10.1124/dmd.119.087718}, pages = {43 Seiten}, year = {2019}, language = {en} } @incollection{TippkoetterMoehringRothetal.2019, author = {Tippk{\"o}tter, Nils and M{\"o}hring, Sophie and Roth, Jasmine and Wulfhorst, Helene}, title = {Logistics of lignocellulosic feedstocks: preprocessing as a preferable option}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_58}, pages = {43 -- 68}, year = {2019}, abstract = {In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material.}, language = {en} } @book{WagemannTippkoetter2019, author = {Wagemann, Kurt and Tippk{\"o}tter, Nils}, title = {Biorefineries / Kurt Wagemann, Nils Tippk{\"o}tter (editors)}, series = {Advances in biochemical engineering/biotechnology book series (ABE)}, journal = {Advances in biochemical engineering/biotechnology book series (ABE)}, publisher = {Springer}, address = {Cham (Switzerland)}, isbn = {978-3-319-97117-9}, doi = {10.1007/978-3-319-97119-3}, pages = {VI, 549 Seiten}, year = {2019}, language = {en} } @article{ScheerHendersonKapelyukhetal.2019, author = {Scheer, Nico and Henderson, Colin James and Kapelyukh, Yury and Rode, Anja and Mclaren, Aileen W. and MacLeod, Alastair Kenneth and Lin, De and Wright, Jayne and Stanley, Lesley and Wolf, C. Roland}, title = {An extensively humanised mouse model to predict pathways of drug disposition, drug/drug interactions, and to facilitate the design of clinical trials}, series = {Drug Metabolism and Disposition}, journal = {Drug Metabolism and Disposition}, number = {Early view}, doi = {10.1124/dmd.119.086397}, pages = {69 Seiten}, year = {2019}, language = {en} } @article{MuschallikKippReckeretal.2020, author = {Muschallik, Lukas and Kipp, Carina Ronja and Recker, Inga and Bongaerts, Johannes and Pohl, Martina and Gelissen, Melanie and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase}, series = {Journal of Biotechnology}, volume = {202}, journal = {Journal of Biotechnology}, number = {Vol. 324}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2590-1559}, doi = {10.1016/j.jbiotec.2020.09.016}, pages = {61 -- 70}, year = {2020}, abstract = {The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.}, language = {en} } @article{CapitainRossJonesMoehringetal.2020, author = {Capitain, Charlotte and Ross-Jones, Jesse and M{\"o}hring, Sophie and Tippk{\"o}tter, Nils}, title = {Differential scanning calorimetry for quantification of polymer biodegradability in compost}, series = {International Biodeterioration \& Biodegradation}, volume = {149}, journal = {International Biodeterioration \& Biodegradation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0964-8305}, doi = {10.1016/j.ibiod.2020.104914}, pages = {In Press, Article number 104914}, year = {2020}, abstract = {The objective of this study is the establishment of a differential scanning calorimetry (DSC) based method for online analysis of the biodegradation of polymers in complex environments. Structural changes during biodegradation, such as an increase in brittleness or crystallinity, can be detected by carefully observing characteristic changes in DSC profiles. Until now, DSC profiles have not been used to draw quantitative conclusions about biodegradation. A new method is presented for quantifying the biodegradation using DSC data, whereby the results were validated using two reference methods. The proposed method is applied to evaluate the biodegradation of three polymeric biomaterials: polyhydroxybutyrate (PHB), cellulose acetate (CA) and Organosolv lignin. The method is suitable for the precise quantification of the biodegradability of PHB. For CA and lignin, conclusions regarding their biodegradation can be drawn with lower resolutions. The proposed method is also able to quantify the biodegradation of blends or composite materials, which differentiates it from commonly used degradation detection methods.}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{SchmidtTurgutLeetal.2020, author = {Schmidt, Aaron C. and Turgut, Hatice and Le, Dao and Beloqui, Ana and Delaittre, Guillaume}, title = {Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics}, series = {Polymer Chemistry}, volume = {11}, journal = {Polymer Chemistry}, number = {2}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C9PY01458F}, pages = {593 -- 604}, year = {2020}, abstract = {The SG1-mediated solution polymerization of methyl methacrylate (MMA) and oligo(ethylene glycol) methacrylate (OEGMA, Mₙ = 300 g mol⁻¹) in the presence of a small amount of functional/reactive styrenic comonomer is investigated. Moieties such as pentafluorophenyl ester, triphenylphosphine, azide, pentafluorophenyl, halide, and pyridine are considered. A comonomer fraction as low as 5 mol\% typically results in a controlled/living behavior, at least up to 50\% conversion. Chain extensions with styrene for both systems were successfully performed. Variation of physical properties such as refractive index (for MMA) and phase transition temperature (for OEGMA) were evaluated by comparing to 100\% pure homopolymers. The introduction of an activated ester styrene derivative in the polymerization of OEGMA allows for the synthesis of reactive and hydrophilic polymer brushes with defined thickness. Finally, using the example of pentafluorostyrene as controlling comonomer, it is demonstrated that functional PMMA-b-PS are able to maintain a phase separation ability, as evidenced by the formation of nanostructured thin films.}, language = {en} } @article{WardoyoNoorElbersetal.2020, author = {Wardoyo, Arinto Y.P. and Noor, Johan A.E. and Elbers, Gereon and Schmitz, Sandra and Flaig, Sascha T. and Budianto, Arif}, title = {Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia}, series = {Polish Journal of Environmental Studies}, volume = {29}, journal = {Polish Journal of Environmental Studies}, number = {2}, publisher = {HARD}, address = {Olsztyn}, issn = {2083-5906}, doi = {10.15244/pjoes/99101}, pages = {1899 -- 1907}, year = {2020}, abstract = {The volcanic eruptions of Mt. Bromo and Mt. Raung in East Java, Indonesia, in 2015 perturbed volcanic materials and affected surface-layer air quality at surrounding locations. During the episodes, the volcanic ash from the eruptions influenced visibility, traffic accidents, flight schedules, and human health. In this research, the volcanic ash particles were collected and characterized by relying on the detail of physical observation. We performed an assessment of the volcanic ash elements to characterize the volcanic ash using two different methods which are aqua regia extracts followed by MP-AES and XRF laboratory test of bulk samples. The analysis results showed that the volcanic ash was mixed of many materials, such as Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, and others. Fe, Si, Ca, and Al were found as the major elements, while the others were the trace elements Ba, Cr, Cu, Mn, P, Mn, Ni, Zn, Sb, Sr, and V with the minor concentrations. XRF analyses showed that Fe dominated the elements of the volcanic ash. The XRF analysis showed that Fe was at 35.40\% in Bromo and 43.00\% in Raung of the detected elements in bulk material. The results of aqua regia extracts analyzed by MP-AES were 1.80\% and 1.70\% of Fe element for Bromo and Raung volcanoes, respectively.}, language = {en} } @article{MoretAlkemadeUpcraftetal.2020, author = {Moret, J.L.T.M. and Alkemade, J. and Upcraft, T.M. and Paulßen, Elisabeth and Wolterbeek, H.T. and Ommen, J.R. van and Denkova, A.G.}, title = {The application of atomic layer deposition in the production of sorbents for ⁹⁹Mo/⁹⁹ᵐTc generator}, series = {Applied Radiation and Isotopes}, volume = {164}, journal = {Applied Radiation and Isotopes}, number = {109266}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2020.109266}, pages = {9}, year = {2020}, abstract = {New production routes for ⁹⁹Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with ⁹⁹Mo/⁹⁹ᵐTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for ⁹⁹Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a ⁹⁹ᵐTc elution efficiency of 55 ± 2\% based on 3 executive elutions.}, language = {en} } @article{ElMoussaouiTalbiAtmaneetal.2020, author = {El Moussaoui, Noureddine and Talbi, Sofian and Atmane, Ilyas and Kassmi, Khalil and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC)}, series = {Solar Energy}, volume = {201}, journal = {Solar Energy}, number = {Vol. 201 (May 2020)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X}, doi = {10.1016/j.solener.2020.03.079}, pages = {866 -- 871}, year = {2020}, abstract = {In this article, we describe the structure, the functioning, and the tests of parabolic trough solar thermal cooker (PSTC). This oven is designed to meet the needs of rural residents, including Urban, which requires stable cooking temperatures above 200 °C. The cooking by this cooker is based on the concentration of the sun's rays on a glass vacuum tube and heating of the oil circulate in a big tube, located inside the glass tube. Through two small tubes, associated with large tube, the heated oil, rise and heats the pot of cooking pot containing the food to be cooked (capacity of 5 kg). This cooker is designed in Germany and extensively tested in Morocco for use by the inhabitants who use wood from forests. During a sunny day, having a maximum solar radiation around 720 W/m2 and temperature ambient around 26 °C, maximum temperatures recorded of the small tube, the large tube and the center of the pot are respectively: 370 °C, 270 °C and 260 °C. The cooking process with food at high (fries, ..), we show that the cooking oil temperature rises to 200 °C, after 1 h of heating, the cooking is done at a temperature of 120 °C for 20 min. These temperatures are practically stable following variations and decreases in the intensity of irradiance during the day. The comparison of these results with those of the literature shows an improvement of 30-50 \% on the maximum value of the temperature with a heat storage that could reach 60 min of autonomy. All the results obtained show the good functioning of the PSTC and the feasibility of cooking food at high temperature (>200 °C).}, language = {en} } @article{EveraersKarimiVarzanehFlecketal.2020, author = {Everaers, Ralf and Karimi-Varzaneh, Hossein Ali and Fleck, Franz and Hojdis, Nils and Svaneborg, Carsten}, title = {Kremer-Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {6}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b02428}, pages = {1901 -- 1916}, year = {2020}, abstract = {The Kremer-Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers.}, language = {en} } @article{EckertAbbasiMangetal.2020, author = {Eckert, Alexander and Abbasi, Mozhdeh and Mang, Thomas and Saalw{\"a}chter, Kay and Walther, Andreas}, title = {Structure, Mechanical Properties, and Dynamics of Polyethylenoxide/Nanoclay Nacre-Mimetic Nanocomposites}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {5}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b01931}, pages = {1716 -- 1725}, year = {2020}, abstract = {Nacre-mimetic nanocomposites based on high fractions of synthetic high-aspect-ratio nanoclays in combination with polymers are continuously pushing boundaries for advanced material properties, such as high barrier against oxygen, extraordinary mechanical behavior, fire shielding, and glass-like transparency. Additionally, they provide interesting model systems to study polymers under nanoconfinement due to the well-defined layered nanocomposite arrangement. Although the general behavior in terms of forming such layered nanocomposite materials using evaporative self-assembly and controlling the nanoclay gallery spacing by the nanoclay/polymer ratio is understood, some combinations of polymer matrices and nanoclay reinforcement do not comply with the established models. Here, we demonstrate a thorough characterization and analysis of such an unusual polymer/nanoclay pair that falls outside of the general behavior. Poly(ethylene oxide) (PEO) and sodium fluorohectorite form nacre-mimetic, lamellar nanocomposites that are completely transparent and show high mechanical stiffness and high gas barrier, but there is only limited expansion of the nanoclay gallery spacing when adding increasing amounts of polymer. This behavior is maintained for molecular weights of PEO varied over four orders of magnitude and can be traced back to depletion forces. By careful investigation via X-ray diffraction and proton low-resolution solid-state NMR, we are able to quantify the amount of mobile and immobilized polymer species in between the nanoclay galleries and around proposed tactoid stacks embedded in a PEO matrix. We further elucidate the unusual confined polymer dynamics, indicating a relevant role of specific surface interactions.}, language = {en} } @article{TippkoetterRoth2020, author = {Tippk{\"o}tter, Nils and Roth, Jasmine}, title = {Purified Butanol from Lignocellulose - Solvent-Impregnated Resins for an Integrated Selective Removal}, series = {Chemie Ingenieur Technik}, volume = {92}, journal = {Chemie Ingenieur Technik}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2640}, doi = {10.1002/cite.202000200}, pages = {1741 -- 1751}, year = {2020}, abstract = {In traditional microbial biobutanol production, the solvent must be recovered during fermentation process for a sufficient space-time yield. Thermal separation is not feasible due to the boiling point of n-butanol. As an integrated and selective solid-liquid separation alternative, solvent impregnated resins (SIRs) were applied. Two polymeric resins were evaluated and an extractant screening was conducted. Vacuum application with vapor collection in fixed-bed column as bioreactor bypass was successfully implemented as butanol desorption step. In course of further increasing process economics, fermentation with renewable lignocellulosic substrates was conducted using Clostridium acetobutylicum. Utilization of SIR was shown to be a potential strategy for solvent removal from fermentation broth, while application of a bypass column allows for product removal and recovery at once.}, language = {en} } @article{CapitainWagnerHummeletal.2021, author = {Capitain, Charlotte and Wagner, Sebastian and Hummel, Joana and Tippk{\"o}tter, Nils}, title = {Investigation of C-N Formation Between Catechols and Chitosan for the Formation of a Strong, Novel Adhesive Mimicking Mussel Adhesion}, series = {Waste and Biomass Valorization}, volume = {12}, journal = {Waste and Biomass Valorization}, publisher = {Springer Nature}, address = {Cham}, issn = {1877-265X}, doi = {10.1007/s12649-020-01110-5}, pages = {1761 -- 1779}, year = {2021}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @article{LowisFergusonPaulssenetal.2021, author = {Lowis, Carsten and Ferguson, Simon and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Improved Sc-44 production in a siphon-style liquid target on a medical cyclotron}, series = {Applied Radiation and Isotopes}, volume = {172}, journal = {Applied Radiation and Isotopes}, number = {Art. 109675}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2021.109675}, year = {2021}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Novel approach of qNMR workflow by standardization using 2H integral: Application to any intrinsic calibration standard}, series = {Talanta}, volume = {222}, journal = {Talanta}, number = {Article number: 121504}, publisher = {Elsevier}, isbn = {0039-9140}, doi = {10.1016/j.talanta.2020.121504}, year = {2021}, abstract = {Quantitative nuclear magnetic resonance (qNMR) is routinely performed by the internal or external standardization. The manuscript describes a simple alternative to these common workflows by using NMR signal of another active nuclei of calibration compound. For example, for any arbitrary compound quantification by NMR can be based on the use of an indirect concentration referencing that relies on a solvent having both 1H and 2H signals. To perform high-quality quantification, the deuteration level of the utilized deuterated solvent has to be estimated. In this contribution the new method was applied to the determination of deuteration levels in different deuterated solvents (MeOD, ACN, CDCl3, acetone, benzene, DMSO-d6). Isopropanol-d6, which contains a defined number of deuterons and protons, was used for standardization. Validation characteristics (precision, accuracy, robustness) were calculated and the results showed that the method can be used in routine practice. Uncertainty budget was also evaluated. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and can be applied in different application areas (purity determination, forensics, pharmaceutical analysis, etc.).}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W. K.}, title = {A step towards optimization of the qNMR workflow: proficiency testing exercise at an GxP-accredited laboratory}, series = {Applied Magnetic Resonance}, volume = {52}, journal = {Applied Magnetic Resonance}, publisher = {Springer Nature}, address = {Wien}, issn = {1613-7507}, doi = {10.1007/s00723-021-01324-3}, pages = {581 -- 593}, year = {2021}, abstract = {Quantitative nuclear magnetic resonance (qNMR) is considered as a powerful tool for multicomponent mixture analysis as well as for the purity determination of single compounds. Special attention is currently paid to the training of operators and study directors involved in qNMR testing. To assure that only qualified personnel are used for sample preparation at our GxP-accredited laboratory, weighing test was proposed. Sixteen participants performed six-fold weighing of the binary mixture of dibutylated hydroxytoluene (BHT) and 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB). To evaluate the quality of data analysis, all spectra were evaluated manually by a qNMR expert and using in-house developed automated routine. The results revealed that mean values are comparable and both evaluation approaches are free of systematic error. However, automated evaluation resulted in an approximately 20\% increase in precision. The same findings were revealed for qNMR analysis of 32 compounds used in pharmaceutical industry. Weighing test by six-fold determination in binary mixtures and automated qNMR methodology can be recommended as efficient tools for evaluating staff proficiency. The automated qNMR method significantly increases throughput and precision of qNMR for routine measurements and extends application scope of qNMR.}, language = {en} } @article{BechtSchollmayerMonakhovaetal.2021, author = {Becht, Alexander and Schollmayer, Curd and Monakhova, Yulia and Holzgrabe, Ulrike}, title = {Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, issn = {1618-2650}, doi = {10.1007/s00216-021-03249-z}, pages = {3107 -- 3118}, year = {2021}, abstract = {Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6\%/99.6\% and 98.7/100\% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.}, language = {en} } @article{BergsMonakhovaDiehletal.2021, author = {Bergs, Michel and Monakhova, Yulia and Diehl, Bernd W. and Konow, Christopher and V{\"o}lkering, Georg and Pude, Ralf and Schulze, Margit}, title = {Lignins isolated via catalyst-free organosolv pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: a comparative study}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26040842}, year = {2021}, abstract = {As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70\% and significantly lower in stem and mixture lignins at around 60\% and almost 65\%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20\% or more (maximum is M. sinensis Sin2 with over 30\%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27\%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.}, language = {en} } @article{BurgerRumpfDoetal.2021, author = {Burger, Ren{\´e} and Rumpf, Jessica and Do, Xuan Tung and Monakhova, Yulia and Diehl, Bernd W. K. and Rehahn, Matthias and Schulze, Margit}, title = {Is NMR combined with multivariate regression applicable for the molecular weight determination of randomly cross-linked polymers such as lignin?}, series = {ACS Omega}, volume = {6}, journal = {ACS Omega}, number = {44}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c03574}, pages = {29516 -- 29524}, year = {2021}, abstract = {The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7-9 and 14-16\% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.}, language = {en} } @article{MonakhovaDiehl2021, author = {Monakhova, Yulia and Diehl, Bernd W. K.}, title = {Simplification of NMR Workflows by Standardization Using 2H Integral of Deuterated Solvent as Applied to Aloe vera Preparations}, series = {Applied Magnetic Resonance}, volume = {52}, journal = {Applied Magnetic Resonance}, number = {11}, publisher = {Springer}, address = {Cham}, issn = {1613-7507}, doi = {10.1007/s00723-021-01393-4}, pages = {1591 -- 1600}, year = {2021}, abstract = {In this study, a recently proposed NMR standardization approach by 2H integral of deuterated solvent for quantitative multicomponent analysis of complex mixtures is presented. As a proof of principle, the existing NMR routine for the analysis of Aloe vera products was modified. Instead of using absolute integrals of targeted compounds and internal standard (nicotinamide) from 1H-NMR spectra, quantification was performed based on the ratio of a particular 1H-NMR compound integral and 2H-NMR signal of deuterated solvent D2O. Validation characteristics (linearity, repeatability, accuracy) were evaluated and the results showed that the method has the same precision as internal standardization in case of multicomponent screening. Moreover, a dehydration process by freeze drying is not necessary for the new routine. Now, our NMR profiling of A. vera products needs only limited sample preparation and data processing. The new standardization methodology provides an appealing alternative for multicomponent NMR screening. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and is recommended in different application areas (purity determination, forensics, pharmaceutical analysis, etc.).}, language = {en} } @article{BurmistrovaSobolevaMonakhova2021, author = {Burmistrova, Natalia A. and Soboleva, Polina M. and Monakhova, Yulia}, title = {Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication?}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {194}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 113811}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2020.113811}, year = {2021}, abstract = {The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares - discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA.}, language = {en} } @article{WeldenJablonskiWegeetal.2021, author = {Welden, Rene and Jablonski, Melanie and Wege, Christina and Keusgen, Michael and Wagner, Patrick Hermann and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase}, series = {Biosensors}, volume = {11}, journal = {Biosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11060171}, pages = {Artikel 171}, year = {2021}, abstract = {The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte's pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.}, language = {en} } @article{CheenakulaHoffstadtKrafftetal.2022, author = {Cheenakula, Dheeraja and Hoffstadt, Kevin and Krafft, Simone and Reinecke, Diana and Klose, Holger and Kuperjans, Isabel and Gr{\"o}mping, Markus}, title = {Anaerobic digestion of algal-bacterial biomass of an Algal Turf Scrubber system}, series = {Biomass Conversion and Biorefinery}, volume = {13}, journal = {Biomass Conversion and Biorefinery}, publisher = {Springer}, address = {Berlin}, issn = {2190-6823}, doi = {10.1007/s13399-022-03236-z}, pages = {15 Seiten}, year = {2022}, abstract = {This study investigated the anaerobic digestion of an algal-bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal-bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4\%) and a mixture of manure and maize silage (107.4\%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6\%) and percolated green waste (43.5\%) inocula. To further evaluate the potential of algal-bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7-12.5 MWh a-1) can be gained through the addition of algal-bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies.}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @article{MonakhovaDiehl2022, author = {Monakhova, Yulia and Diehl, Bernd W.K.}, title = {Multinuclear NMR screening of pharmaceuticals using standardization by 2H integral of a deuterated solvent}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {209}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114530}, publisher = {Elsevier}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2021.114530}, year = {2022}, abstract = {NMR standardization approach that uses the 2H integral of deuterated solvent for quantitative multinuclear analysis of pharmaceuticals is described. As a proof of principle, the existing NMR procedure for the analysis of heparin products according to US Pharmacopeia monograph is extended to the determination of Na+ and Cl- content in this matrix. Quantification is performed based on the ratio of a 23Na (35Cl) NMR integral and 2H NMR signal of deuterated solvent, D2O, acquired using the specific spectrometer hardware. As an alternative, the possibility of 133Cs standardization using the addition of Cs2CO3 stock solution is shown. Validation characteristics (linearity, repeatability, sensitivity) are evaluated. A holistic NMR profiling of heparin products can now also be used for the quantitative determination of inorganic compounds in a single analytical run using a single sample. In general, the new standardization methodology provides an appealing alternative for the NMR screening of inorganic and organic components in pharmaceutical products.}, language = {en} } @article{WeldenPoghossianVahidpouretal.2022, author = {Welden, Melanie and Poghossian, Arshak and Vahidpour, Farnoosh and Wendlandt, Tim and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12010043}, pages = {Artikel 43}, year = {2022}, abstract = {Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.}, language = {en} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Bongaerts, Johannes and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060218}, pages = {Artikel 218}, year = {2022}, abstract = {Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte-insulator-semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin-streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage-current, capacitance-voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.}, language = {en} } @article{OjovanSteinmetz2022, author = {Ojovan, Michael I. and Steinmetz, Hans-J{\"u}rgen}, title = {Approaches to Disposal of Nuclear Waste}, series = {Energies}, volume = {15}, journal = {Energies}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15207804}, pages = {Artikel 7804}, year = {2022}, abstract = {We present a concise mini overview on the approaches to the disposal of nuclear waste currently used or deployed. The disposal of nuclear waste is the end point of nuclear waste management (NWM) activities and is the emplacement of waste in an appropriate facility without the intention to retrieve it. The IAEA has developed an internationally accepted classification scheme based on the end points of NWM, which is used as guidance. Retention times needed for safe isolation of waste radionuclides are estimated based on the radiotoxicity of nuclear waste. Disposal facilities usually rely on a multi-barrier defence system to isolate the waste from the biosphere, which comprises the natural geological barrier and the engineered barrier system. Disposal facilities could be of a trench type, vaults, tunnels, shafts, boreholes, or mined repositories. A graded approach relates the depth of the disposal facilities' location with the level of hazard. Disposal practices demonstrate the reliability of nuclear waste disposal with minimal expected impacts on the environment and humans.}, language = {en} } @misc{BraunKrafftTippkoetter2022, author = {Braun, Lena and Krafft, Simone and Tippk{\"o}tter, Nils}, title = {Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255308}, pages = {1304}, year = {2022}, abstract = {A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used.}, language = {en} }