@inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{MoretAlkemadeUpcraftetal.2020, author = {Moret, J.L.T.M. and Alkemade, J. and Upcraft, T.M. and Paulßen, Elisabeth and Wolterbeek, H.T. and Ommen, J.R. van and Denkova, A.G.}, title = {The application of atomic layer deposition in the production of sorbents for ⁹⁹Mo/⁹⁹ᵐTc generator}, series = {Applied Radiation and Isotopes}, volume = {164}, journal = {Applied Radiation and Isotopes}, number = {109266}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2020.109266}, pages = {9}, year = {2020}, abstract = {New production routes for ⁹⁹Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with ⁹⁹Mo/⁹⁹ᵐTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for ⁹⁹Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a ⁹⁹ᵐTc elution efficiency of 55 ± 2\% based on 3 executive elutions.}, language = {en} } @article{SchiedermeierRettnerHeilmannetal.2019, author = {Schiedermeier, Maximilian and Rettner, Cornelius and Heilmann, Marcel and Schneider, Felix and Marz, Martin}, title = {Interference of automotive HV-DC-systems by traction voltage-source-inverters (VSI)}, series = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, journal = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, publisher = {IEEE}, address = {New York}, doi = {10.1109/ITEC-India48457.2019.ITECINDIA2019-37}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2016, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Multiscale approach to equilibrating model polymer melts}, series = {Physical Review E}, volume = {94}, journal = {Physical Review E}, number = {032502}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {2470-0053}, doi = {10.1103/PhysRevE.94.032502}, year = {2016}, abstract = {We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce correct monomer packing. We generate 15 melts of 500 chains of 10.000 beads for varying chain stiffness as well as a number of melts with 1.000 chains of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes is straightforward.}, language = {en} } @article{SchwabHojdisLacayoetal.2016, author = {Schwab, Lukas and Hojdis, Nils and Lacayo, Jorge and Wilhelm, Manfred}, title = {Fourier-Transform Rheology of Unvulcanized, Carbon Black Filled Styrene Butadiene Rubber}, series = {Macromolecular Materials and Engineering}, volume = {301}, journal = {Macromolecular Materials and Engineering}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.201500356}, pages = {457 -- 468}, year = {2016}, abstract = {Rubber materials filled with reinforcing fillers display nonlinear rheological behavior at small strain amplitudes below γ0 < 0.1. Nevertheless, rheological data are analyzed mostly in terms of linear parameters, such as shear moduli (G′, G″), which loose their physical meaning in the nonlinear regime. In this work styrene butadiene rubber filled with carbon black (CB) under large amplitude oscillatory shear (LAOS) is analyzed in terms of the nonlinear parameter I3/1. Three different CB grades are used and the filler load is varied between 0 and 70 phr. It is found that I3/1(φ) is most sensitive to changes of the total accessible filler surface area at low strain amplitudes (γ0 = 0.32). The addition of up to 70 phr CB leads to an increase of I3/1(φ) by a factor of more than ten. The influence of the measurement temperature on I3/1 is pronounced for CB levels above the percolation threshold.}, language = {en} } @article{HarishWriggersJungketal.2016, author = {Harish, Ajay B. and Wriggers, Peter and Jungk, Juliane and Hojdis, Nils and Recker, Carla}, title = {Mesoscale Constitutive Modeling of Non-Crystallizing Filled Elastomers}, series = {Computational Mechanics}, volume = {57}, journal = {Computational Mechanics}, publisher = {Springer}, address = {Berlin}, issn = {1432-0924}, doi = {10.1007/s00466-015-1251-1}, pages = {653 -- 677}, year = {2016}, abstract = {Elastomers are exceptional materials owing to their ability to undergo large deformations before failure. However, due to their very low stiffness, they are not always suitable for industrial applications. Addition of filler particles provides reinforcing effects and thus enhances the material properties that render them more versatile for applications like tyres etc. However, deformation behavior of filled polymers is accompanied by several nonlinear effects like Mullins and Payne effect. To this day, the physical and chemical changes resulting in such nonlinear effect remain an active area of research. In this work, we develop a heterogeneous (or multiphase) constitutive model at the mesoscale explicitly considering filler particle aggregates, elastomeric matrix and their mechanical interaction through an approximate interface layer. The developed constitutive model is used to demonstrate cluster breakage, also, as one of the possible sources for Mullins effect observed in non-crystallizing filled elastomers.}, language = {en} } @article{HentschkeHagerHojdis2014, author = {Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils}, title = {Molecular Modeling Approach to the Prediction of Mechanical Properties of Silica-Reinforced Rubbers}, series = {Journal of Applied Polymer Science}, volume = {131}, journal = {Journal of Applied Polymer Science}, number = {18}, publisher = {Wiley}, address = {New York, NY}, issn = {1097-4628}, doi = {10.1002/app.40806}, pages = {1 -- 9}, year = {2014}, abstract = {Recently, we have suggested a nanomechanical model for dissipative loss in filled elastomer networks in the context of the Payne effect. The mechanism is based on a total interfiller particle force exhibiting an intermittent loop, due to the combination of short-range repulsion and dispersion forces with a long-range elastic attraction. The sum of these forces leads, under external strain, to a spontaneous instability of "bonds" between the aggregates in a filler network and attendant energy dissipation. Here, we use molecular dynamics simulations to obtain chemically realistic forces between surface modified silica particles. The latter are combined with the above model to estimate the loss modulus and the low strain storage modulus in elastomers containing the aforementioned filler-compatibilizer systems. The model is compared to experimental dynamic moduli of silica filled rubbers. We find good agreement between the model predictions and the experiments as function of the compatibilizer's molecular structure and its bulk concentration.}, language = {en} } @article{ElMoussaouiTalbiAtmaneetal.2020, author = {El Moussaoui, Noureddine and Talbi, Sofian and Atmane, Ilyas and Kassmi, Khalil and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC)}, series = {Solar Energy}, volume = {201}, journal = {Solar Energy}, number = {Vol. 201 (May 2020)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X}, doi = {10.1016/j.solener.2020.03.079}, pages = {866 -- 871}, year = {2020}, abstract = {In this article, we describe the structure, the functioning, and the tests of parabolic trough solar thermal cooker (PSTC). This oven is designed to meet the needs of rural residents, including Urban, which requires stable cooking temperatures above 200 °C. The cooking by this cooker is based on the concentration of the sun's rays on a glass vacuum tube and heating of the oil circulate in a big tube, located inside the glass tube. Through two small tubes, associated with large tube, the heated oil, rise and heats the pot of cooking pot containing the food to be cooked (capacity of 5 kg). This cooker is designed in Germany and extensively tested in Morocco for use by the inhabitants who use wood from forests. During a sunny day, having a maximum solar radiation around 720 W/m2 and temperature ambient around 26 °C, maximum temperatures recorded of the small tube, the large tube and the center of the pot are respectively: 370 °C, 270 °C and 260 °C. The cooking process with food at high (fries, ..), we show that the cooking oil temperature rises to 200 °C, after 1 h of heating, the cooking is done at a temperature of 120 °C for 20 min. These temperatures are practically stable following variations and decreases in the intensity of irradiance during the day. The comparison of these results with those of the literature shows an improvement of 30-50 \% on the maximum value of the temperature with a heat storage that could reach 60 min of autonomy. All the results obtained show the good functioning of the PSTC and the feasibility of cooking food at high temperature (>200 °C).}, language = {en} } @article{EveraersKarimiVarzanehFlecketal.2020, author = {Everaers, Ralf and Karimi-Varzaneh, Hossein Ali and Fleck, Franz and Hojdis, Nils and Svaneborg, Carsten}, title = {Kremer-Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {6}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b02428}, pages = {1901 -- 1916}, year = {2020}, abstract = {The Kremer-Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers.}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @article{HagerHentschkeHojdisetal.2015, author = {Hager, Jonathan and Hentschke, Reinhard and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite}, series = {Macromolecules}, volume = {48}, journal = {Macromolecules}, number = {24}, issn = {1520-5835}, doi = {10.1021/acs.macromol.5b01864}, pages = {9039 -- 9049}, year = {2015}, language = {en} } @article{WallerBraunHojdisetal.2007, author = {Waller, Mark P. and Braun, Heiko and Hojdis, Nils and B{\"u}hl, Michael}, title = {Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory}, series = {Journal of Chemical Theory and Computation}, volume = {3}, journal = {Journal of Chemical Theory and Computation}, number = {6}, issn = {1549-9626}, doi = {10.1021/ct700178y}, pages = {2234 -- 2242}, year = {2007}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{MayerHentschkeHageretal.2017, author = {Mayer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varnaneh, Hossein Ali}, title = {A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 11275}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, year = {2017}, language = {en} } @article{EckertAbbasiMangetal.2020, author = {Eckert, Alexander and Abbasi, Mozhdeh and Mang, Thomas and Saalw{\"a}chter, Kay and Walther, Andreas}, title = {Structure, Mechanical Properties, and Dynamics of Polyethylenoxide/Nanoclay Nacre-Mimetic Nanocomposites}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {5}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b01931}, pages = {1716 -- 1725}, year = {2020}, abstract = {Nacre-mimetic nanocomposites based on high fractions of synthetic high-aspect-ratio nanoclays in combination with polymers are continuously pushing boundaries for advanced material properties, such as high barrier against oxygen, extraordinary mechanical behavior, fire shielding, and glass-like transparency. Additionally, they provide interesting model systems to study polymers under nanoconfinement due to the well-defined layered nanocomposite arrangement. Although the general behavior in terms of forming such layered nanocomposite materials using evaporative self-assembly and controlling the nanoclay gallery spacing by the nanoclay/polymer ratio is understood, some combinations of polymer matrices and nanoclay reinforcement do not comply with the established models. Here, we demonstrate a thorough characterization and analysis of such an unusual polymer/nanoclay pair that falls outside of the general behavior. Poly(ethylene oxide) (PEO) and sodium fluorohectorite form nacre-mimetic, lamellar nanocomposites that are completely transparent and show high mechanical stiffness and high gas barrier, but there is only limited expansion of the nanoclay gallery spacing when adding increasing amounts of polymer. This behavior is maintained for molecular weights of PEO varied over four orders of magnitude and can be traced back to depletion forces. By careful investigation via X-ray diffraction and proton low-resolution solid-state NMR, we are able to quantify the amount of mobile and immobilized polymer species in between the nanoclay galleries and around proposed tactoid stacks embedded in a PEO matrix. We further elucidate the unusual confined polymer dynamics, indicating a relevant role of specific surface interactions.}, language = {en} } @article{LowisFergusonPaulssenetal.2021, author = {Lowis, Carsten and Ferguson, Simon and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Improved Sc-44 production in a siphon-style liquid target on a medical cyclotron}, series = {Applied Radiation and Isotopes}, volume = {172}, journal = {Applied Radiation and Isotopes}, number = {Art. 109675}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2021.109675}, year = {2021}, language = {en} } @article{HaegerGrankinWagner2023, author = {Haeger, Gerrit and Grankin, Alina and Wagner, Michaela}, title = {Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology}, series = {Applied Research}, journal = {Applied Research}, number = {Early View}, publisher = {Wiley-VCH}, issn = {2702-4288}, doi = {10.1002/appl.202200106}, pages = {1 -- 15}, year = {2023}, abstract = {Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47\%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78\%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems.}, language = {en} } @book{Lauth2023, author = {Lauth, Jakob}, title = {Physical chemistry in a nutshell: Basics for engineers and scientists}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-67636-3 (Softcover)}, doi = {10.1007/978-3-662-67637-0}, pages = {XIII, 248 Seiten}, year = {2023}, abstract = {This book is based on a multimedia course for biological and chemical engineers, which is designed to trigger students' curiosity and initiative. A solid basic knowledge of thermodynamics and kinetics is necessary for understanding many technical, chemical, and biological processes. The one-semester basic lecture course was divided into 12 workshops (chapters). Each chapter covers a practically relevant area of physical chemistry and contains the following didactic elements that make this book particularly exciting and understandable: - Links to Videos at the start of each chapter as preparation for the workshop - Key terms (in bold) for further research of your own - Comprehension questions and calculation exercises with solutions as learning checks - Key illustrations as simple, easy-to-replicate blackboard pictures Humorous cartoons for each workshop (by Faelis) additionally lighten up the text and facilitate the learning process as a mnemonic. To round out the book, the appendix includes a summary of the most popular experiments in basic physical chemistry courses, as well as suggestions for designing workshops with exhibits, experiments, and "questions of the day." Suitable for students minoring in chemistry; chemistry majors are sure to find this slimmed-down, didactically valuable book helpful as well. The book is excellent for self-study.}, language = {en} } @article{DellmannGloriusLitvinovetal.2023, author = {Dellmann, Sophia Florence and Glorius, J. and Litvinov, Yu A. and Reifarth, R. and Al-Khasawneh, Kafa and Aliotta, M. and Bott, L. and Br{\"u}ckner, Benjamin and Bruno, C. G. and Chen, Ruijiu and Davinson, T. and Dickel, T. and Dillmann, Iris and Dmytriev, D. and Erbacher, P. and Freire-Fern{\´a}ndez, D. and Forstner, Oliver and Geissel, H. and G{\"o}bel, K. and Griffin, Christopher J. and Grisenti, R. and Gumberidze, Alexandre and Haettner, Emma and Hagmann, Siegbert and Heil, M. and Heß, R. and Hillenbrand, P.-M. and Joseph, R. and Jurado, B. and Kozhuharov, Christophor and Kulikov, I. and L{\"o}her, Bastian and Langer, Christoph and Leckenby, Guy and Lederer-Woods, C. and Lestinsky, M. and Litvinov, S. A. and Lorenz, B. A. and Lorenz, E. and Marsh, J. and Menz, Esther Babette and Morgenroth, T. and Petridis, N. and Pibernat, Jerome and Popp, U. and Psaltis, Athanasios and Sanjari, Shahab and Scheidenberger, C. and Sguazzin, M. and Sidhu, Ragandeep Singh and Spillmann, Uwe and Steck, M. and St{\"o}hlker, T. and Surzhykov, A. and Swartz, J. A. and T{\"o}rnqvist, H. and Varga, L. and Vescovi, Diego and Weick, H. and Weigand, M. and Woods, P. and Xing, Y. and Yamaguchi, Taiyo}, title = {Proton capture on stored radioactive ¹¹⁸Te ions}, series = {EPJ Web of Conferences}, volume = {279}, journal = {EPJ Web of Conferences}, number = {Article Number: 11018}, publisher = {EDP Sciences}, issn = {2100-014X}, doi = {10.1051/epjconf/202327911018}, pages = {1 -- 5}, year = {2023}, abstract = {Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented.}, language = {en} } @unpublished{GreinerJerominSitholeetal.2023, author = {Greiner, Lasse and Jeromin, G{\"u}nter Erich and Sithole, Patience and Petersen, Soenke}, title = {Preprint: Studies on the enzymatic reduction of levulinic acid using Chiralidon-R and Chiralidon-S}, series = {ChemRxiv}, journal = {ChemRxiv}, doi = {10.26434/chemrxiv-2023-jlvcv}, pages = {13 Seiten}, year = {2023}, abstract = {The enzymatic reduction of levulinic acid by the chiral catalysts Chiralidon-R and Chiralidon-S which are commercially available superabsorbed alcohol dehydrogenases is described. The Chiralidon®-R/S reduces the levulinic acid to the (R,S)-4-hydroxy valeric acid and the (R)- or (S)- gamma-valerolactone.}, language = {en} } @article{DegeringEggertPulsetal.2010, author = {Degering, Christian and Eggert, Thorsten and Puls, Michael and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and Jaeger, Karl-Erich}, title = {Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and herologous signal peptides}, series = {Applied and environmental microbiology}, volume = {76}, journal = {Applied and environmental microbiology}, number = {19}, publisher = {American Society for Microbiology}, address = {Washington, DC}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, doi = {10.1128/AEM.01146-10}, pages = {6370 -- 6378}, year = {2010}, abstract = {Bacillus subtilis and Bacillus licheniformis are widely used for the large-scale industrial production of proteins. These strains can efficiently secrete proteins into the culture medium using the general secretion (Sec) pathway. A characteristic feature of all secreted proteins is their N-terminal signal peptides, which are recognized by the secretion machinery. Here, we have studied the production of an industrially important secreted protease, namely, subtilisin BPN′ from Bacillus amyloliquefaciens. One hundred seventy-three signal peptides originating from B. subtilis and 220 signal peptides from the B. licheniformis type strain were fused to this secretion target and expressed in B. subtilis, and the resulting library was analyzed by high-throughput screening for extracellular proteolytic activity. We have identified a number of signal peptides originating from both organisms which produced significantly increased yield of the secreted protease. Interestingly, we observed that levels of extracellular protease were improved not only in B. subtilis, which was used as the screening host, but also in two different B. licheniformis strains. To date, it is impossible to predict which signal peptide will result in better secretion and thus an improved yield of a given extracellular target protein. Our data show that screening a library consisting of homologous and heterologous signal peptides fused to a target protein can identify more-effective signal peptides, resulting in improved protein export not only in the original screening host but also in different production strains.}, language = {en} } @article{DeppeBongaertsO'Connelletal.2011, author = {Deppe, Veronika Maria and Bongaerts, Johannes and O'Connell, Timothy and Maurer, Karl-Heinz and Meinhardt, Friedhelm}, title = {Enzymatic deglycation of Amadori products in bacteria}, series = {Applied microbiology and biotechnology}, volume = {Vol. 90}, journal = {Applied microbiology and biotechnology}, number = {Iss. 2}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {399 -- 406}, year = {2011}, language = {en} } @article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @article{JossekBongaertsSprenger2001, author = {Jossek, Ralf and Bongaerts, Johannes and Sprenger, Georg A.}, title = {Characterization of a new feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase AroF of Escherichia coli}, series = {FEMS microbiology letters}, volume = {Vol. 202}, journal = {FEMS microbiology letters}, number = {Iss. 1}, issn = {1574-6968}, pages = {145 -- 148}, year = {2001}, language = {en} } @article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @article{ScheeleOertelBongaertsetal.2013, author = {Scheele, Sandra and Oertel, Dan and Bongaerts, Johannes and Evers, Stefan and Hellmuth, Hendrik and Maurer, Karl-Heinz and Bott, Michael and Freudl, Roland}, title = {Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum}, series = {Microbial biotechnology}, journal = {Microbial biotechnology}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1751-7915}, pages = {202 -- 206}, year = {2013}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{SchroeterHoffmannVoigtetal.2014, author = {Schroeter, Rebecca and Hoffmann, Tamara and Voigt, Birgit and Meyer, Hanna and Bleisteiner, Monika and Muntel, Jan and J{\"u}rgen, Britta and Albrecht, Dirk and Becher, D{\"o}rte and Lalk, Michael and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Putzer, Harald and Hecker, Michael and Schweder, Thomas and Bremer, Erhard}, title = {Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0080956}, pages = {e80956}, year = {2014}, abstract = {The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.}, language = {en} } @article{VoigtSchroeterJuergenetal.2013, author = {Voigt, Birgit and Schroeter, Rebecca and J{\"u}rgen, Britta and Albrecht, Dirk and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Schweder, Thomas and Hecker, Michael}, title = {The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon}, series = {Proteomics}, volume = {Vol. 13}, journal = {Proteomics}, number = {Iss. 14}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861 (E-Journal); 1615-9853 (Print)}, pages = {2140 -- 2146}, year = {2013}, language = {en} } @article{SchmitzHirschBongaertsetal.2002, author = {Schmitz, M. and Hirsch, E. and Bongaerts, Johannes and Takors, Ralf}, title = {Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Eschericia coli}, series = {Biotechnology progress}, volume = {Vol. 18}, journal = {Biotechnology progress}, number = {Iss. 5}, issn = {1520-6033 (E-Journal); 8756-7938 (Print)}, pages = {935 -- 941}, year = {2002}, language = {en} } @article{MuellerBongaertsBovenbergetal.2001, author = {M{\"u}ller, Ulrike and Bongaerts, Johannes and Bovenberg, Roel and Jossek, Ralf and Kr{\"a}mer, Marco and Linnemann, J. and M{\"u}schen, S. and Ritterbecks, S. and Sprenger, G. and Wubbolts, Marcel}, title = {Metabolic engineering to produce fine chemicals in Escherichia coli}, series = {Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent}, volume = {66 (3a)}, journal = {Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent}, issn = {0035-533x}, pages = {215 -- 217}, year = {2001}, language = {en} } @article{HandtkeVollandMethlingetal.2014, author = {Handtke, Stefan and Volland, Sonja and Methling, Karen and Albrecht, Dirk and Becher, D{\"o}rte and Nehls, Jenny and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Liesegang, Heiko and Voigt, Birgit and Daniel, Rolf and Hecker, Michael}, title = {Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach}, series = {Journal of Biotechnology}, journal = {Journal of Biotechnology}, number = {192(A)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2014.08.028}, pages = {204 -- 214}, year = {2014}, abstract = {Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43\% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.}, language = {en} } @article{WiegandDietrichHerteletal.2013, author = {Wiegand, Sandra and Dietrich, Sascha and Hertel, Robert and Bongaerts, Johannes and Evers, Stefan and Volland, Sonja and Daniel, Rolf and Liesegang, Heiko}, title = {RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation}, series = {BMC genomics}, volume = {Vol. 14}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, pages = {667}, year = {2013}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @article{TippkoetterRoth2020, author = {Tippk{\"o}tter, Nils and Roth, Jasmine}, title = {Purified Butanol from Lignocellulose - Solvent-Impregnated Resins for an Integrated Selective Removal}, series = {Chemie Ingenieur Technik}, volume = {92}, journal = {Chemie Ingenieur Technik}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2640}, doi = {10.1002/cite.202000200}, pages = {1741 -- 1751}, year = {2020}, abstract = {In traditional microbial biobutanol production, the solvent must be recovered during fermentation process for a sufficient space-time yield. Thermal separation is not feasible due to the boiling point of n-butanol. As an integrated and selective solid-liquid separation alternative, solvent impregnated resins (SIRs) were applied. Two polymeric resins were evaluated and an extractant screening was conducted. Vacuum application with vapor collection in fixed-bed column as bioreactor bypass was successfully implemented as butanol desorption step. In course of further increasing process economics, fermentation with renewable lignocellulosic substrates was conducted using Clostridium acetobutylicum. Utilization of SIR was shown to be a potential strategy for solvent removal from fermentation broth, while application of a bypass column allows for product removal and recovery at once.}, language = {en} } @article{UndenBongaerts1997, author = {Unden, Gottfried and Bongaerts, Johannes}, title = {Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors}, series = {Biochimica et biophysica acta (BBA) - Bioenergetics}, volume = {Vol. 1320}, journal = {Biochimica et biophysica acta (BBA) - Bioenergetics}, number = {Iss. 3}, issn = {1879-2650 (E-Journal); 0005-2728 (Print)}, pages = {217 -- 234}, year = {1997}, language = {en} } @inproceedings{HeringUlberTippkoetter2016, author = {Hering, T. and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Development of a screening system for antimicrobial surfaces}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {129}, year = {2016}, language = {en} } @inproceedings{CapitainHeringTippkoetteretal.2016, author = {Capitain, C. and Hering, T. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Enzymatic polymerization of lignin model compounds and solubilized lignin in an aqueous ethanol extract}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {151 -- 152}, year = {2016}, language = {en} } @incollection{ArtmannMeruvuKizildagetal.2018, author = {Artmann, Gerhard and Meruvu, Haritha and Kizildag, Sefa and Temiz Artmann, Ayseg{\"u}l}, title = {Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_7}, pages = {157 -- 192}, year = {2018}, abstract = {Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative "CellDrum technology" was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology.}, language = {en} } @article{TippkoetterAlKaidyWollnyetal.2013, author = {Tippk{\"o}tter, Nils and Al-Kaidy, Huschyar and Wollny, Steffen and Ulber, Roland}, title = {Functionalized magnetizable particles for downstream processing in single-use systems}, series = {Chemie Ingenieur Technik}, volume = {85}, journal = {Chemie Ingenieur Technik}, number = {1-2: Special Issue: Single-Use Technology}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.201200130}, pages = {76 -- 86}, year = {2013}, abstract = {Biotechnological downstream processing is usually an elaborate procedure, requiring a multitude of unit operations to isolate the target component. Besides the disadvantageous space-time yield, the risks of cross-contaminations and product loss grow fast with the complexity of the isolation procedure. A significant reduction of unit operations can be achieved by application of magnetic particles, especially if these are functionalized with affinity ligands. As magnetic susceptible materials are highly uncommon in biotechnological processes, target binding and selective separation of such particles from fermentation or reactions broths can be done in a single step. Since the magnetizable particles can be produced from iron salts and low priced polymers, a single-use implementation of these systems is highly conceivable. In this article, the principles of magnetizable particles, their synthesis and functionalization are explained. Furthermore, applications in the area of reaction engineering, microfluidics and downstream processing are discussed focusing on established single-use technologies and development potential.}, language = {en} } @article{DeppeKlatteBongaertsetal.2011, author = {Deppe, Veronika Maria and Klatte, Stephanie and Bongaerts, Johannes and Maurer, Karl-Heinz and O'Connell, Timothy and Meinhardt, Friedhelm}, title = {Genetic control of Amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR}, series = {Applied and environmental microbiology}, volume = {Vol. 77}, journal = {Applied and environmental microbiology}, number = {No. 9}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, pages = {2839 -- 2846}, year = {2011}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @inproceedings{EngelThieringerTippkoetter2016, author = {Engel, M. and Thieringer, J. and Tippk{\"o}tter, Nils}, title = {Microbial electrosynthesis for sustainable biobutanol production}, series = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, booktitle = {New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany}, publisher = {DECHEMA}, address = {Frankfurt am Main}, pages = {77 -- 78}, year = {2016}, language = {en} } @article{BorgmeierBongaertsMeinhardt2012, author = {Borgmeier, Claudia and Bongaerts, Johannes and Meinhardt, Friedhelm}, title = {Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production}, series = {Journal of biotechnology}, volume = {159}, journal = {Journal of biotechnology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2012.02.011}, pages = {12 -- 20}, year = {2012}, abstract = {Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele - known to cause hypersecretion in Bacillus subtilis - resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG - known to interfere with DegU DNA-binding in B. subtilis - did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.}, language = {en} } @article{MolinnusSorichBartzetal.2016, author = {Molinnus, Denise and Sorich, Maren and Bartz, Alexander and Siegert, Petra and Willenberg, Holger S. and Lisdat, Fred and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate}, series = {Sensors and Actuators B: Chemical}, volume = {237}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.064}, pages = {190 -- 195}, year = {2016}, abstract = {An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer's solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure.}, language = {en} } @article{BaeckerBegingBisellietal.2009, author = {B{\"a}cker, Matthias and Beging, Stefan and Biselli, Manfred and Poghossian, Arshak and Wang, J. and Zang, Werner and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Concept for a solid-state multi-parameter sensor system for cell-culture monitoring}, series = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, journal = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0013-4686}, pages = {6107 -- 6112}, year = {2009}, language = {en} } @article{HuckSchiffelsHerreraetal.2013, author = {Huck, Christina and Schiffels, Johannes and Herrera, Cony N. and Schelden, Maximilian and Selmer, Thorsten and Poghossian, Arshak and Baumann, Marcus and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201200900}, pages = {926 -- 931}, year = {2013}, abstract = {Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the "welfare" of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis-Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed.}, language = {en} }