@techreport{LawsonBaddooVanieretal.2013, author = {Lawson, R.M. and Baddoo, N.R. and Vanier, G. and D{\"o}ring, Bernd and Kuhnhenne, M. and Nieminen, J. and Beguin, P. and Herbin, S. and Caroli, G. and Adetunji, I. and Kozlowski, A.}, title = {Renovation of buildings using steel technologies (Robust) - EUR 25335}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-24950-1}, issn = {1831-9424}, doi = {10.2777/97860}, pages = {134 Seiten}, year = {2013}, abstract = {Robust addresses the renovation and improvement of existing residential, industrial and commercial buildings using steel-based technologies, focusing on techniques such as over-cladding, over-roofing and roof-top extensions. Steel-intensive renovation techniques currently on the market were reviewed. Performance criteria were developed for over-cladding systems meeting current regulatory standards, with guidelines on how to achieve appropriate levels of air-tightness.}, language = {en} } @techreport{FeldmannKuhnhenneDoeringetal.2013, author = {Feldmann, M. and Kuhnhenne, M. and D{\"o}ring, Bernd and Pyschny, D. and Lawson, R.M. and Chuter, R.D. and Boudjabeur, S. and Lecomte-Labory, F. and Airaksinen, M. and Heikkinen, J. and Laamanen, J. and Albart, P. and D'Haeyer, R. and Chica, J.A. and Maseda, J.M. and Amundarain, A. and Rips, M.O. and Nu{\~n}ez, J.A. and Mac{\´i}as, O. and Beguin, P. and Ben Larbi, A.}, title = {Energy and thermal improvements for construction in steel (ETHICS) - EUR 26010}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-30789-8}, issn = {1831-9424}, doi = {10.2777/17106}, pages = {136 Seiten}, year = {2013}, abstract = {ETHICS is concerned with evaluating, measuring and making improvements in the thermal and energy performance of steel-clad and steel-framed buildings. It addresses basic building physics performance at a laboratory and full-scale level, and the preparation of design guidance for commercial, industrial and residential buildings. It includes the development of design tools to assist users in assessing whole-building performance, and calibrates these tools against whole-building measurements, which will be obtained from this research. Opportunities for renewable energy and other energy-saving features will be assessed. This project focuses on objectives that are of particular interest for the design of new steel constructions regarding energy efficiency. ETHICS investigates the as-built performance by on-site tests regarding air tightness and heat transfer properties of the building envelope and by monitoring the energy consumption and thermal comfort of selected up-to-date steel buildings. As energy efficiency is a key requirement for design and construction of buildings in the future, this project provides well-founded scientific data, which prove the high energy performance of current steel constructions and work out details for further improvements to maintain and extend the position of steel products in the construction sector.}, language = {en} } @techreport{KestiMononenLautsoetal.2015, author = {Kesti, Jyrki and Mononen, Tarmo and Lautso, Petteri and D{\"o}ring, Bernd and Reger, Vitali and Holopainen, R. and Jung, N. and Shemeikka, J. and Nieminen, J. and Reda, F. and Lawson, Mark and Botti, Andrea and Hall, R. and Zold, A. and Buday, T.}, title = {Zero energy solutions for multifunctional steel intensive commercial buildings (ZEMUSIC) - EUR 27627}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-54071-4}, issn = {1831-9424}, doi = {10.2777/111520}, pages = {146 Seiten}, year = {2015}, abstract = {The broad commercial objective of this project was the sustainable value creation in steel building technology by addressing the ways in which significant energy reductions can be made in the operation phase of multi-storey commercial buildings. A review on energy efficient commercial buildings in Europe has been carried out consisting of several case studies from different countries. The project included development of zero-energy concepts for reducing energy demand as well as concepts for heating, cooling and ventilation systems by utilising renewable energy sources in three different climates. Also alternative structural frame solutions were developed and analyzed in respect of structural and MEP (mechanical, electrical and plumbing solutions) features. An innovative long span floor system with integrated MEP routings promises a cost effective alternative for sophisticated ventilation distribution and radiant heating and cooling systems, allowing for high energy efficiency and high quality interior climate. The report includes also review of best architectural practices for integrated renewable energy solutions including different design strategies for building facades of zero energy buildings. Interesting results and design basis are also presented for steel energy pile concept, where structural foundation piles are utilized for ground energy harvesting. Life cycle cost calculations for near zero energy office building based on developed technologies show that a near zero energy construction is also profitable. The results and work methods of the project have been summarized in the form of design guidance that offers designers the knowledge gained in a form that can be easily understood.}, language = {en} } @inproceedings{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel B.}, title = {Interfacial velocity estimation in highly aerated stepped spillway flows with a single tip fibre optical probe and Artificial Neural Networks}, series = {6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. L{\"u}beck, Germany}, booktitle = {6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. L{\"u}beck, Germany}, doi = {10.15142/T3Q590}, pages = {13 Seiten}, year = {2016}, abstract = {Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) phase functions at different locations of a stepped spillway. These phase functions have been related to the interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial velocity.}, language = {en} } @incollection{FeldmannDoeringPyschny2016, author = {Feldmann, M. and D{\"o}ring, Bernd and Pyschny, D.}, title = {Floor systems; Sustainabilty analyses and assessments of steel bridges}, series = {Sustainable steel buildings : a practical guide for structures and envelopes}, booktitle = {Sustainable steel buildings : a practical guide for structures and envelopes}, publisher = {Wiley Blackwell}, address = {Chichester, West Sussex}, isbn = {978-1-118-74079-8 (PDF)}, pages = {198 -- 223}, year = {2016}, language = {en} } @book{BleningerBrendaBungetal.2016, author = {Bleninger, T. and Brenda, M. and Bung, Daniel B. and Hengl, M. and Schmid, B.H. and Schneider, E. and Sonnenburg, A. and Stoschek, O.}, title = {DWA-Regelwerk M 544-2 : Merkblatt: Ausbreitungsprobleme von Einleitungen - Prozesse, Methoden und Modelle - Teil 2: Mehrdimensionale Modelle}, address = {Hennef}, organization = {DWA, Deutsche Vereinigung f{\"u}r Wasserwirtschaft, Abwasser und Abfall e.V.}, isbn = {978-3-88721-281-0}, pages = {91 Seiten}, year = {2016}, language = {de} } @article{Hebel2017, author = {Hebel, Christoph}, title = {Erfahrungen mit der RIN und aktuelle Weiterentwicklungen}, series = {Straßenverkehrstechnik: Organ der Forschungsgesellschaft f{\"u}r Straßen- und Verkehrswesen, der Bundesvereinigung der Straßenbau- und Verkehrsingenieure und der {\"O}sterreichischen Forschungsgesellschaft Straße und Verkehr; Zeitschrift f{\"u}r Verkehrsplanung, Verkehrsmanagement, Verkehrssicherheit, Verkehrstechnik}, volume = {61}, journal = {Straßenverkehrstechnik: Organ der Forschungsgesellschaft f{\"u}r Straßen- und Verkehrswesen, der Bundesvereinigung der Straßenbau- und Verkehrsingenieure und der {\"O}sterreichischen Forschungsgesellschaft Straße und Verkehr; Zeitschrift f{\"u}r Verkehrsplanung, Verkehrsmanagement, Verkehrssicherheit, Verkehrstechnik}, number = {7}, publisher = {Kirschbaum-Verlag}, address = {Bonn}, issn = {0039-2219}, pages = {443 -- 448}, year = {2017}, language = {de} } @article{Hoettges2017, author = {H{\"o}ttges, J{\"o}rg}, title = {QKan - Management of drainage system data with QGIS}, series = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, volume = {17}, journal = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, number = {Article 13}, pages = {95 -- 100}, year = {2017}, language = {en} } @phdthesis{Mainz2017, author = {Mainz, Stefan}, title = {Zur Berechnung der Tragf{\"a}higkeit von d{\"u}nnwandigen Koppelpfetten aus Kaltprofilen f{\"u}r Biegung um die schwache Achse und Torsion}, address = {Hamburg}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:1373-opus-3798}, pages = {261 Seiten}, year = {2017}, language = {de} } @book{UibelPeterson2017, author = {Uibel, Thomas and Peterson, Leif Arne}, title = {Tagungsband Aachener Holzbautagung 2017}, editor = {Uibel, Thomas and Peterson, Leif Arne}, publisher = {FH Aachen}, address = {Aachen}, issn = {2197-4489}, pages = {96 Seiten ; Illustrationen, graph. Darst.}, year = {2017}, language = {de} } @book{UibelPeterson2015, author = {Uibel, Thomas and Peterson, Leif Arne}, title = {Tagungsband Aachener Holzbautagung 2015}, editor = {Uibel, Thomas and Peterson, Leif Arne}, publisher = {FH Aachen}, address = {Aachen}, issn = {2197-4489}, pages = {85 Seiten. , Illustrationen, graph. Darst.}, year = {2015}, language = {de} } @article{LaumannMainzKrahwinkel2017, author = {Laumann, J{\"o}rg and Mainz, Stefan and Krahwinkel, Manuel}, title = {Traglastuntersuchungen an Koppelpfetten bei Biegung um die schwache Achse und Torsion}, series = {Stahlbau}, volume = {86}, journal = {Stahlbau}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {0038-9145}, doi = {10.1002/stab.201710544}, pages = {1005 -- 1016}, year = {2017}, language = {de} } @article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Reformulating self-aeration in hydraulic structures: Turbulent growth of free surface perturbations leading to air entrainment}, series = {International Journal of Multiphase Flow}, volume = {100}, journal = {International Journal of Multiphase Flow}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9322}, doi = {10.1016/j.ijmultiphaseflow.2017.12.011}, pages = {127 -- 142}, year = {2018}, abstract = {A new formulation for the prediction of free surface dynamics related to the turbulence occurring nearby is proposed. This formulation, altogether with a breakup criterion, can be used to compute the inception of self-aeration in high velocity flows like those occurring in hydraulic structures. Assuming a simple perturbation geometry, a kinematic and a non-linear momentum-based dynamic equation are formulated and forces acting on a control volume are approximated. Limiting steepness is proposed as an adequate breakup criterion. Role of the velocity fluctuations normal to the free surface is shown to be the main turbulence quantity related to self-aeration and the role of the scales contained in the turbulence spectrum are depicted. Surface tension force is integrated accounting for large displacements by using differential geometry for the curvature estimation. Gravity and pressure effects are also contemplated in the proposed formulation. The obtained equations can be numerically integrated for each wavelength, hence resulting in different growth rates and allowing computation of the free surface roughness wavelength distribution. Application to a prototype scale spillway (at the Aviemore dam) revealed that most unstable wavelength was close to the Taylor lengthscale. Amplitude distributions have been also obtained observing different scaling for perturbations stabilized by gravity or surface tension. The proposed theoretical framework represents a new conceptualization of self-aeration which explains the characteristic rough surface at the non-aerated region as well as other previous experimental observations which remained unresolved for several decades.}, language = {en} } @article{ValeroBung2017, author = {Valero, Daniel and Bung, Daniel B.}, title = {Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe}, series = {Journal of Hydro-environment Research}, volume = {19}, journal = {Journal of Hydro-environment Research}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2017.08.004}, pages = {150 -- 159}, year = {2017}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @inproceedings{ValeroBungErpicumetal.2017, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Dewals, Benjamin}, title = {Numerical study of turbulent oscillations around a cylinder: RANS capabilities and sensitivity analysis}, series = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, booktitle = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, issn = {2521-716X}, pages = {3126 -- 3135}, year = {2017}, language = {en} } @inproceedings{BungValero2017, author = {Bung, Daniel B. and Valero, Daniel}, title = {FlowCV - An open-source toolbox for computer vision applications in turbulent flows}, series = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, booktitle = {Proceedings of the 37th IAHR World Congress August 13 - 18, 2017, Kuala Lumpur, Malaysia}, issn = {2521-716X}, pages = {5356 -- 5365}, year = {2017}, language = {en} } @article{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Einsatz von Holzwerkstoffen in Fahrzeugstrukturen}, series = {Bauen mit Holz}, journal = {Bauen mit Holz}, number = {3}, publisher = {Bruderverlag}, address = {K{\"o}ln}, issn = {0005-6545}, pages = {32 -- 38}, year = {2017}, language = {de} } @article{Uibel2016, author = {Uibel, Thomas}, title = {Untersuchungen zum Spaltverhalten von Holzschrauben. Teil 1}, series = {Bauen mit Holz}, journal = {Bauen mit Holz}, number = {10}, publisher = {Rudolf M{\"u}ller}, address = {K{\"o}ln}, issn = {0005-6545}, pages = {40 -- 42}, year = {2016}, language = {de} } @article{MoorkampPetersonUibel2016, author = {Moorkamp, Wilfried and Peterson, Leif Arne and Uibel, Thomas}, title = {Mit guten Aussichten. Bericht {\"u}ber den Studiengang Holzingenieurwesen an der FH Aachen}, series = {Bauen mit Holz}, journal = {Bauen mit Holz}, number = {5}, publisher = {Rudolf M{\"u}ller}, address = {K{\"o}ln}, issn = {0005-6545}, pages = {33 -- 36}, year = {2016}, language = {de} } @inproceedings{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Holzwerkstoffe in Karosseriestrukturen}, series = {Tagungsband Aachener Holzbautagung 2017}, booktitle = {Tagungsband Aachener Holzbautagung 2017}, editor = {Uibel, Thormas and Peterson, Leif Arne and Baumann, Marcus}, issn = {2197-4489}, pages = {34 -- 45}, year = {2017}, language = {de} } @article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001485}, year = {2018}, abstract = {A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.}, language = {en} } @article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} } @article{KerresSiekmann2017, author = {Kerres, Karsten and Siekmann, Marko}, title = {Wie kommuniziere ich prognosegest{\"u}tzte Instandhaltungsstrategien erfolgreich in politischen Entscheidungsgremien?}, series = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, journal = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, number = {12}, publisher = {Vulkan-Verl.}, address = {Essen}, issn = {2191-9798}, pages = {47 -- 51}, year = {2017}, language = {de} } @article{ZhangValeroBungetal.2018, author = {Zhang, G. and Valero, Daniel and Bung, Daniel B. and Chanson, H.}, title = {On the estimation of free-surface turbulence using ultrasonic sensors}, series = {Flow Measurement and Instrumentation}, volume = {60}, journal = {Flow Measurement and Instrumentation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2018.02.009}, pages = {171 -- 184}, year = {2018}, abstract = {Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed.}, language = {en} } @book{JochimLademann2018, author = {Jochim, Haldor E. and Lademann, Frank}, title = {Planung von Bahnanlagen: Grundlagen - Planung - Berechnung}, edition = {2., aktualisierte und erweiterte Auflage}, publisher = {Fachbuchverlag Leipzig im Carl Hanser Verlag}, address = {M{\"u}nchen}, isbn = {978-3-446-44220-7}, doi = {10.3139/9783446448940}, pages = {240 Seiten}, year = {2018}, language = {de} } @article{BungValero2018, author = {Bung, Daniel B. and Valero, Daniel}, title = {Re-aeration on stepped spillways with special consideration of entrained and entrapped air}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, pages = {Article number 333}, year = {2018}, abstract = {As with most high-velocity free-surface flows, stepped spillway flows become self-aerated when the drop height exceeds a critical value. Due to the step-induced macro-roughness, the flow field becomes more turbulent than on a similar smooth-invert chute. For this reason, cascades are oftentimes used as re-aeration structures in wastewater treatment. However, for stepped spillways as flood release structures downstream of deoxygenated reservoirs, gas transfer is also of crucial significance to meet ecological requirements. Prediction of mass transfer velocities becomes challenging, as the flow regime differs from typical previously studied flow conditions. In this paper, detailed air-water flow measurements are conducted on stepped spillway models with different geometry, with the aim to estimate the specific air-water interface. Re-aeration performances are determined by applying the absorption method. In contrast to earlier studies, the aerated water body is considered a continuous mixture up to a level where 75\% air concentration is reached. Above this level, a homogenous surface wave field is considered, which is found to significantly affect the total air-water interface available for mass transfer. Geometrical characteristics of these surface waves are obtained from high-speed camera investigations. The results show that both the mean air concentration and the mean flow velocity have influence on the mass transfer. Finally, an empirical relationship for the mass transfer on stepped spillway models is proposed.}, language = {en} } @inproceedings{BungValeroHermens2018, author = {Bung, Daniel B. and Valero, Daniel and Hermens, G.}, title = {Hybrid investigation on the hydraulic performance of a new trapezoidal fishway}, series = {7th IAHR International Symposium on Hydraulic Structures, ISHS 2018}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, ISHS 2018}, isbn = {978-069213277-7}, doi = {10.15142/T3S06R}, pages = {184 -- 193}, year = {2018}, language = {de} } @inproceedings{BungTullis2018, author = {Bung, Daniel B. and Tullis, Blake}, title = {Hydraulic Structures - ISHS2018 in Perspective}, series = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, isbn = {978-0-692-13277-7}, doi = {10.15142/T3WH2B}, pages = {9 seiten}, year = {2018}, language = {en} } @inproceedings{ValeroVogelSchmidtetal.2018, author = {Valero, Daniel and Vogel, Jochen and Schmidt, Daniel and Bung, Daniel B.}, title = {Three-dimensional flow structure inside the cavity of a non-aerated stepped chute}, series = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, isbn = {978-0-692-13277-7}, doi = {10.15142/T3GH17}, pages = {12 Seiten}, year = {2018}, language = {en} } @article{KramerValeroChansonetal.2019, author = {Kramer, Matthias and Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique}, series = {Experiments in Fluids}, volume = {60}, journal = {Experiments in Fluids}, publisher = {Springer}, address = {Berlin}, issn = {1432-1114}, doi = {10.1007/s00348-018-2650-9}, year = {2019}, language = {en} } @article{ValeroVitiGualtieri2019, author = {Valero, Daniel and Viti, Nicolo and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11010036}, pages = {Art. Nr. 36}, year = {2019}, language = {en} } @article{VitiValeroGualtieri2019, author = {Viti, Nicolo and Valero, Daniel and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, issn = {2073-4441}, doi = {10.3390/w11010028}, pages = {Art. Nr. 28}, year = {2019}, language = {en} } @article{JochimMenzel2018, author = {Jochim, Haldor E. and Menzel, Christoph J.}, title = {Die Trassenb{\"u}ndelung als Planungsmethode nachhaltiger Verkehrspolitik}, series = {Der Eisenbahningenieur : EI}, volume = {69}, journal = {Der Eisenbahningenieur : EI}, number = {11}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2810}, pages = {26 -- 31}, year = {2018}, language = {de} } @book{KrauseUlke2019, author = {Krause, Thomas and Ulke, Bernd}, title = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb: Klausurvorbereitung mit ausf{\"u}hrlichen L{\"o}sungen}, edition = {3., {\"u}berarb. Aufl.}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, doi = {10.1007/978-3-658-23127-9}, pages = {XI, 347 S., 227 Abb.}, year = {2019}, language = {de} } @article{RegerKuhnhenneHachuletal.2019, author = {Reger, Vitali and Kuhnhenne, Markus and Hachul, Helmut and D{\"o}ring, Bernd and Blanke, Tobias and G{\"o}ttsche, Joachim}, title = {Plusenergiegeb{\"a}ude 2.0 in Stahlleichtbauweise}, series = {Stahlbau}, volume = {88}, journal = {Stahlbau}, number = {6}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049 (E-journal), 0038-9145 (print)}, doi = {10.1002/stab.201900034}, pages = {522 -- 528}, year = {2019}, language = {de} } @article{ValeroChansonBung2019, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for turbulence properties assessment}, pages = {1 -- 24}, year = {2019}, language = {en} } @article{KlubertMalechaSparla2018, author = {Klubert, Joachim and Malecha, Hartmut and Sparla, Peter}, title = {Modernisierung der geod{\"a}tischen Messtechnik der Urfttalsperre}, series = {Wasserwirtschaft}, volume = {108}, journal = {Wasserwirtschaft}, number = {10}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0043-0978}, pages = {14 -- 18}, year = {2018}, language = {de} } @book{KrauseUlke2019, author = {Krause, Thomas and Ulke, Bernd}, title = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb: Klausurvorbereitung mit ausf{\"u}hrlichen L{\"o}sungen}, edition = {3., Auflage}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23126-2}, pages = {XI, 347 Seiten ; Illustrationen}, year = {2019}, language = {de} } @inproceedings{KerpenSchooneesSchlurmannetal.2019, author = {Kerpen, Nils B. and Schoonees, Talia and Schlurmann, Torsten and Valero, Daniel and Bung, Daniel B.}, title = {waveSTEPS - Wellenauf- und Wellen{\"u}berlauf an getreppten Deckwerken}, series = {24. KFKI-Seminar 2019, 21.11.2019}, booktitle = {24. KFKI-Seminar 2019, 21.11.2019}, pages = {2 Seiten}, year = {2019}, language = {de} } @article{ValeroChansonBung2020, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Robust estimators for free surface turbulence characterization: A stepped spillway application}, series = {Flow Measurement and Instrumentation}, volume = {76}, journal = {Flow Measurement and Instrumentation}, number = {Art. 101809}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2020.101809}, year = {2020}, abstract = {Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables' probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique.}, language = {en} } @article{WoliszSchuetzBlankeetal.2017, author = {Wolisz, Henryk and Sch{\"u}tz, Thomas and Blanke, Tobias and Hagenkamp, Markus and Kohrn, Markus and Wesseling, Mark and M{\"u}ller, Dirk}, title = {Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets}, series = {Energy}, volume = {137}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.energy.2017.06.025}, pages = {715 -- 728}, year = {2017}, language = {en} } @book{KrauseUlkeMartinetal.2019, author = {Krause, Thomas and Ulke, Bernd and Martin, Joachim and Lemke, J{\"o}rg and Sparla, Peter and Streit, Wilfried}, title = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb: Klausurvorbereitung mit ausf{\"u}hrlichen L{\"o}sungen}, editor = {Krause, Thomas and Ulke, Bernd}, edition = {3. Auflage}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23126-2 (Print) 978-3-658-23127-9 (Online)}, pages = {XI, 347 Seiten ; Illustrationen}, year = {2019}, language = {de} } @incollection{Martin2019, author = {Martin, Joachim}, title = {Bemessung von Baukonstruktionen}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_1}, pages = {1 -- 11}, year = {2019}, language = {de} } @incollection{Sparla2019, author = {Sparla, Peter}, title = {Vermessung}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_2}, pages = {13 -- 61}, year = {2019}, language = {de} } @incollection{Ulke2019, author = {Ulke, Bernd}, title = {Der baurechtliche Vertrag}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, pages = {63 -- 87}, year = {2019}, abstract = {Anhand von kurzen theoretischen Einf{\"u}hrungen werden anhand von Beispielen die wesentlichen Aspekte des baurechtlichen Vertrages erl{\"a}utert. Nach einer Einf{\"u}hrung {\"u}ber das Zustandekommen von (Bau-) Vertr{\"a}gen wird die f{\"u}r Streitf{\"a}lle unerl{\"a}ssliche Dokumentation auf Baustellen erl{\"a}utert. Hierbei werden Hinweise zur Erstellung von Protokollen, zum E-Mail bei Großprojekten und zur Dokumentation von Stundenlohnarbeiten gegeben. Des Weiteren wird eine Schriftverkehrsliste vorgestellt, die zur Nachverfolgung des Schriftverkehrs bei Großprojekten unerl{\"a}sslich ist. Anschließend werden die typischen Vertragsarten vorgestellt, die bei der Abwicklung von Großprojekten zu beachten sind und die Unterschiede werden durch Fallbeispiele erl{\"a}utert. Einen Schwerpunkt des Kapitels bilden auftragsnehmerseitige Verz{\"u}ge sowie mangelbehaftete Leistungen. Hier werden Hinweise gegeben, wie in den entsprechenden Situationen zu reagieren ist.}, language = {de} } @incollection{Ulke2019, author = {Ulke, Bernd}, title = {Baukosten und Finanzierung}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_4}, pages = {89 -- 100}, year = {2019}, language = {de} } @incollection{Krause2019, author = {Krause, Thomas}, title = {Bauabrechnung und Mengenermittlung}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_5}, pages = {101 -- 116}, year = {2019}, language = {de} } @incollection{Ulke2019, author = {Ulke, Bernd}, title = {Arbeitsvorbereitung und Ablaufplanung}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_6}, pages = {117 -- 154}, year = {2019}, language = {de} } @incollection{Krause2019, author = {Krause, Thomas}, title = {Baumaschinen}, series = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, booktitle = {{\"U}bungsaufgaben und Berechnungen f{\"u}r den Baubetrieb}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-23127-9}, doi = {10.1007/978-3-658-23127-9_7}, pages = {155 -- 163}, year = {2019}, language = {de} }