@article{GeorgStollenwerkReinkensmeieretal.2021, author = {Georg, J{\"o}rg Heiner and Stollenwerk, Dominik and Reinkensmeier, Sebastian and Jungbluth, Christian}, title = {„Smartes" Laden an {\"o}ffentlich zug{\"a}nglichen Lades{\"a}ulen - Teil 1: Quo vadis, Marktdesign?}, series = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {71}, journal = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {1/2}, publisher = {ETV Energieverlag}, address = {Essen}, isbn = {0720-6240}, issn = {0013-743X}, pages = {64 -- 69}, year = {2021}, language = {de} } @article{StollenwerkReinkensmeierGeorgetal.2021, author = {Stollenwerk, Dominik and Reinkensmeier, Sebastian and Georg, J{\"o}rg Heiner and Jungbluth, Christian}, title = {„Smartes" Laden an {\"o}ffentlich zug{\"a}nglichen Lades{\"a}ulen - Teil 2: USER-Verhalten und -Erwartungen}, series = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {71}, journal = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {3}, publisher = {ETV Energieverlag}, address = {Essen}, isbn = {0720-6240}, issn = {0013-743X}, pages = {38 -- 42}, year = {2021}, language = {de} } @inproceedings{NierlePieper2023, author = {Nierle, Elisabeth and Pieper, Martin}, title = {Measuring social impacts in engineering education to improve sustainability skills}, series = {European Society for Engineering Education (SEFI)}, booktitle = {European Society for Engineering Education (SEFI)}, doi = {10.21427/QPR4-0T22}, pages = {9 Seiten}, year = {2023}, abstract = {In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.}, language = {en} } @inproceedings{MaurerMiskiwAcostaetal.2023, author = {Maurer, Florian and Miskiw, Kim K. and Acosta, Rebeca Ramirez and Harder, Nick and Sander, Volker and Lehnhoff, Sebastian}, title = {Market abstraction of energy markets and policies - application in an agent-based modeling toolbox}, series = {EI.A 2023: Energy Informatics}, booktitle = {EI.A 2023: Energy Informatics}, editor = {Jorgensen, Bo Norregaard and Pereira da Silva, Luiz Carlos and Ma, Zheng}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-48651-7 (Print)}, doi = {10.1007/978-3-031-48652-4_10}, pages = {139 -- 157}, year = {2023}, abstract = {In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.}, language = {en} } @article{RuppRiekeHandschuhetal.2020, author = {Rupp, Matthias and Rieke, Christian and Handschuh, Nils and Kuperjans, Isabel}, title = {Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities}, series = {Transportation Research Part D: Transport and Environment}, volume = {81}, journal = {Transportation Research Part D: Transport and Environment}, number = {Article 102293}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1361-9209}, doi = {10.1016/j.trd.2020.102293}, year = {2020}, abstract = {In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles' charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6\% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9\%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5\% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, abstract = {A German-Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space-time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.}, language = {en} } @article{Kuperjans1996, author = {Kuperjans, Isabel}, title = {Exergetische und exergo{\"o}konomische Analyse thermischer Prozesse}, series = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, journal = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, number = {06}, year = {1996}, language = {de} } @inproceedings{KasparGroebelKuperjansetal.2013, author = {Kaspar, K. and Groebel, Simone and Kuperjans, Isabel and Dielmann, Klaus-Peter and Selmer, Thorsten}, title = {Charakterisierung der Bioz{\"o}nose von Biogasfermentern in Abh{\"a}ngigkeit verschiedener Substrate}, series = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, booktitle = {Biogas 2013 : 6. Innovationskongress, 23. - 24.05.2013, Osnabr{\"u}ck, Tagungsband}, publisher = {Profair Consult+Project}, address = {Hildesheim}, issn = {978-3-9813776-3-7}, pages = {69 -- 74}, year = {2013}, language = {de} } @inproceedings{AugensteinHerbergsKuperjansetal.2005, author = {Augenstein, Eckardt and Herbergs, S. and Kuperjans, Isabel and Lucas, K.}, title = {Simulation of industrial energy supply systems with integrated cost optimization}, series = {Proceedings of ECOS 2005, the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems : Trondheim, Norway, June 20 - 22, 2005. - Vol. 2}, booktitle = {Proceedings of ECOS 2005, the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems : Trondheim, Norway, June 20 - 22, 2005. - Vol. 2}, editor = {Kjelstrup, Signe}, publisher = {Tapir Academic Press}, address = {Trondheim}, isbn = {82-519-2041-8}, pages = {627 -- 634}, year = {2005}, language = {en} } @inproceedings{KueppersGroebelKuperjansetal.2011, author = {K{\"u}ppers, Christine and Groebel, Simone and Kuperjans, Isabel and Dielmann, Klaus-Peter}, title = {Molekulargenetische Analysen zur Optimierung der Biogasgewinnung}, series = {Biogas 2011 : 4. Innovationskongress ; Effizienzsteigerung von Biogasanlagen ; Vorstellung der 17 besten Biogas-Innovationen der letzten 12 Monate ; 12. - 13. Mai 2011, im ZUK der Deutschen Bundesstiftung Umwelt ; Tagungsband}, booktitle = {Biogas 2011 : 4. Innovationskongress ; Effizienzsteigerung von Biogasanlagen ; Vorstellung der 17 besten Biogas-Innovationen der letzten 12 Monate ; 12. - 13. Mai 2011, im ZUK der Deutschen Bundesstiftung Umwelt ; Tagungsband}, publisher = {Profair Consult+Project}, address = {Hildesheim}, isbn = {978-3-9813776-1-3}, pages = {45 -- 48}, year = {2011}, language = {de} } @inproceedings{AugensteinHerbergsKuperjans2006, author = {Augenstein, Eckardt and Herbergs, S. and Kuperjans, Isabel}, title = {Planung und Bewertung der Geb{\"a}udeenergieversorgung mit TOP-Energy}, series = {Heizungs- und Raumlufttechnik : 1. Fachtagung Leonberg, 31. Januar bis 1. Februar 2006. - (VDI-Berichte ; Nr. 1921)}, booktitle = {Heizungs- und Raumlufttechnik : 1. Fachtagung Leonberg, 31. Januar bis 1. Februar 2006. - (VDI-Berichte ; Nr. 1921)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091921-3}, pages = {57 -- 60}, year = {2006}, language = {de} } @inproceedings{KuperjansSchreiberDetermannetal.1998, author = {Kuperjans, Isabel and Schreiber, M. and Determann, L. and Schreiber, R.}, title = {Entscheidungsunterst{\"u}tzung bei der Gestaltung der betrieblichen Energieversorgung und -nutzung}, series = {Innovationen bei der rationellen Energieanwendung : neue Chancen f{\"u}r die Wirtschaft ; Tagung Dortmund, 3. und 4. M{\"a}rz 1998. - (VDI-Berichte ; 1385)}, booktitle = {Innovationen bei der rationellen Energieanwendung : neue Chancen f{\"u}r die Wirtschaft ; Tagung Dortmund, 3. und 4. M{\"a}rz 1998. - (VDI-Berichte ; 1385)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091385-1}, pages = {79 -- 94}, year = {1998}, language = {de} } @incollection{AugensteinGuerzenichKuperjansetal.2004, author = {Augenstein, Eckardt and G{\"u}rzenich, D. and Kuperjans, Isabel and Wrobel, G.}, title = {TOP-Energy : softwaregest{\"u}tzte Analyse und Optimierung industrieller Energieversorgungssysteme}, series = {Entwicklungslinien der Energietechnik 2004}, booktitle = {Entwicklungslinien der Energietechnik 2004}, edition = {CD-ROM-Ausg.}, publisher = {VDI}, address = {D{\"u}sseldorf}, year = {2004}, language = {de} } @phdthesis{Betsch2009, author = {Betsch, Matthias}, title = {Umbau einer Mikroturbine zu einer extern befeuerten Maschine mit Ankopplung an eine Station{\"a}re-Wirbelschichtfeuerung}, publisher = {Univ. Rostock, Fakult{\"a}t f{\"u}r Maschinenbau und Schiffstechnik}, address = {Rostock}, url = {http://nbn-resolving.de/nbn:de:gbv:28-diss2009-0166-9}, pages = {150 S.}, year = {2009}, language = {de} } @article{TixMollKrafftetal.2024, author = {Tix, Julian and Moll, Fabian and Krafft, Simone and Betsch, Matthias and Tippk{\"o}tter, Nils}, title = {Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana}, series = {Energies}, volume = {17}, journal = {Energies}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en17122938}, pages = {20 Seiten}, year = {2024}, abstract = {Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481\% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L-1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83\% could be measured in the overhead space.}, language = {en} } @inproceedings{AugensteinKuperjansLucas2002, author = {Augenstein, Eckardt and Kuperjans, Isabel and Lucas, K.}, title = {EUSEBIA - Decision-Support-System for Technical, Economical and Ecological Design and Evaluation of Industrial Energy Systems}, series = {ECOS 2002 : proceedings of the 15th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Berlin, Germany July 3 - 5, 2002. - Vol. 1}, booktitle = {ECOS 2002 : proceedings of the 15th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Berlin, Germany July 3 - 5, 2002. - Vol. 1}, editor = {Tsatsaronis,, Georgios}, publisher = {Techn. Univ., Inst. for Energy Engineering}, address = {Berlin}, isbn = {3-00-009533-0}, pages = {446 -- 453}, year = {2002}, language = {en} } @article{KuperjansGuerzenichRoosen2005, author = {Kuperjans, Isabel and G{\"u}rzenich, D. and Roosen, P.}, title = {Kostenfunktionen im WWW : Unterst{\"u}tzung der Auslegung energietechnischer Anlagen und deren Verschaltungen}, series = {Gasw{\"a}rme international (GWI)}, volume = {54}, journal = {Gasw{\"a}rme international (GWI)}, number = {1}, issn = {0020-9384}, pages = {19 -- 21}, year = {2005}, language = {de} } @inproceedings{KumaranGopinathanRazalietal.2013, author = {Kumaran, P. and Gopinathan, M. and Razali, N. M. and Kuperjans, Isabel and Hariffin, B. and Hamdan, H.}, title = {Preliminary evaluation of atomization characteristics of improved biodiesel for gas turbine application}, series = {IOP Conference Series: Earth and Environmental Science (EES)}, volume = {16}, booktitle = {IOP Conference Series: Earth and Environmental Science (EES)}, number = {1}, publisher = {Institute of Physics Publishing (IOP)}, address = {London [u.a.]}, issn = {1755-1315}, doi = {10.1088/1755-1315/16/1/012014}, pages = {012014/1 -- 012014/4}, year = {2013}, language = {en} } @inproceedings{AugensteinKuperjans2001, author = {Augenstein, Eckardt and Kuperjans, Isabel}, title = {Softwaregest{\"u}tzte Analyse und Konzeption betrieblicher Energieversorgungsanlagen}, series = {Fortschrittliche Energiewandlung und -anwendung : Schwerpunkt: dezentrale Energiesysteme ; Tagung Bochum, 13. und 14. M{\"a}rz 2001. - (VDI-Berichte ; 1594)}, booktitle = {Fortschrittliche Energiewandlung und -anwendung : Schwerpunkt: dezentrale Energiesysteme ; Tagung Bochum, 13. und 14. M{\"a}rz 2001. - (VDI-Berichte ; 1594)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091594-3}, pages = {313 -- 322}, year = {2001}, language = {de} } @article{KuperjansEsserMeyeretal.2000, author = {Kuperjans, Isabel and Esser, J. and Meyer, J{\"o}rg and Donner, O.}, title = {Gestaltung und Bewertung von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {Umweltwirtschaftsforum : UWF}, volume = {8}, journal = {Umweltwirtschaftsforum : UWF}, number = {3}, issn = {0943-3481}, pages = {53 -- 58}, year = {2000}, language = {de} } @article{AugensteinHerbergsKuperjans2006, author = {Augenstein, Eckardt and Herbergs, S. and Kuperjans, Isabel}, title = {TOP-Energy : ein Werkzeug zur Optimierung der Geb{\"a}udeenergieversorgung}, series = {KI : K{\"a}lte, Luft, Klimatechnik}, journal = {KI : K{\"a}lte, Luft, Klimatechnik}, number = {5}, issn = {1865-5432}, pages = {198 -- 201}, year = {2006}, language = {de} } @phdthesis{Groebel2013, author = {Groebel, Simone}, title = {Zusammensetzung der Bioz{\"o}nose der Methanbildung unter Anwendung molekularbiologischer Methoden : Auswahl und Immobilisierung eines prozesstragenden Organismus auf einem Biosensor mit dem Ziel der {\"U}berwachung der Prozessstabilit{\"a}t kommerzieller Biogasanlagen}, publisher = {Univ.-Bibliothek}, address = {Rostock}, year = {2013}, language = {de} } @article{KuperjansStarkeEsseretal.2000, author = {Kuperjans, Isabel and Starke, M. and Esser, J. and [u.a.],}, title = {Analyse und Konzeption von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, volume = {44}, journal = {WLB : Umwelttechnik f{\"u}r Industrie und Kommune}, number = {11/12}, issn = {0341-2679}, pages = {26 -- 29}, year = {2000}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Formeln statt Zahlen : Referenzwerte Formeln zur energetischen Bewertung von Produktionsanlagen}, series = {BWK : das Energie-Fachmagazin}, volume = {57}, journal = {BWK : das Energie-Fachmagazin}, number = {12}, issn = {0006-9612}, pages = {52 -- 55}, year = {2005}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Produktbezogene Referenzwerte f{\"u}r Energieeffizienz und CO2-Emissionen}, series = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {55}, journal = {Energiewirtschaftliche Tagesfragen : et ; Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {6}, issn = {0013-743X}, pages = {374 -- 376}, year = {2005}, language = {de} } @inproceedings{KuperjansAugenstein2001, author = {Kuperjans, Isabel and Augenstein, Eckardt}, title = {„EUSEBIA - Software zur Analyse und Verbesserung der betrieblichen Energiewirtschaft}, series = {Optimierung in der Energieversorgung : Tagung Veitsh{\"o}chheim, 9. und 10. Oktober 2001. - (VDI-Berichte ; 1627)}, booktitle = {Optimierung in der Energieversorgung : Tagung Veitsh{\"o}chheim, 9. und 10. Oktober 2001. - (VDI-Berichte ; 1627)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091627-3}, pages = {267 -- 268}, year = {2001}, language = {de} } @inproceedings{KuperjansSeitzWilhelm1998, author = {Kuperjans, Isabel and Seitz, C.-W. and Wilhelm, H.-G.}, title = {Realisierung einer Fernw{\"a}rmeversorgung mit Kraft-W{\"a}rme-Kopplung f{\"u}r den Wohnwertpark Br{\"u}hl}, series = {Energiemanagement in Kommunen und {\"o}ffentlichen Einrichtungen : Tagung Stuttgart, 16. und 17. September 1998. - (VDI-Berichte ; 1424)}, booktitle = {Energiemanagement in Kommunen und {\"o}ffentlichen Einrichtungen : Tagung Stuttgart, 16. und 17. September 1998. - (VDI-Berichte ; 1424)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, organization = {Gesellschaft Energietechnik}, issn = {3-18-091424-6}, pages = {129 -- 138}, year = {1998}, language = {de} } @article{RuppHandschuhRiekeetal.2019, author = {Rupp, Matthias and Handschuh, Nils and Rieke, Christian and Kuperjans, Isabel}, title = {Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany}, series = {Applied Energy}, volume = {237}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2019.01.059}, pages = {618 -- 634}, year = {2019}, language = {en} } @inproceedings{StollenwerkRiekeDahmenetal.2016, author = {Stollenwerk, Dominik and Rieke, Christian and Dahmen, Markus and Pieper, Martin}, title = {Biogas Production Modelling : A Control System Engineering Approach}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012008}, pages = {012008/1 -- 012008/4}, year = {2016}, language = {en} } @article{CheenakulaPaulsenOttetal.2023, author = {Cheenakula, Dheeraja and Paulsen, Svea and Ott, Fabian and Gr{\"o}mping, Markus}, title = {Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant}, series = {Water and Environment Journal}, volume = {38}, journal = {Water and Environment Journal}, number = {1}, publisher = {Wiley}, address = {Chichester}, issn = {1747-6593}, doi = {10.1111/wej.12898}, pages = {59 -- 70}, year = {2023}, abstract = {The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15-30°C), pH value (6.0-8.0) and chemical oxygen demand (COD)/N ratio (≤1.5-6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally.}, language = {en} } @article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @article{Kuperjans2011, author = {Kuperjans, Isabel}, title = {Gute Planung ist alles : Energieeffizienz in der Pharmaproduktion}, series = {Pharma + Food}, volume = {2011}, journal = {Pharma + Food}, number = {2}, publisher = {H{\"u}thig}, address = {Heidelberg}, issn = {1434-8942}, pages = {8 -- 10}, year = {2011}, language = {de} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} } @inproceedings{KuperjansTerpitzTerruhnetal.1999, author = {Kuperjans, Isabel and Terpitz, J. and Terruhn, H. and Wilhelm, H.-G.}, title = {Simulation zur Konzeption und Analyse betrieblicher und kommunaler Nahw{\"a}rmesysteme}, series = {Betriebliches Energiemanagement : Tagung Cottbus, 30. und 31. M{\"a}rz 1999. - (VDI-Berichte ; 1462)}, booktitle = {Betriebliches Energiemanagement : Tagung Cottbus, 30. und 31. M{\"a}rz 1999. - (VDI-Berichte ; 1462)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091462-9}, pages = {195 -- 204}, year = {1999}, language = {de} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @article{MaurerRiekeSchemmetal.2023, author = {Maurer, Florian and Rieke, Christian and Schemm, Ralf and Stollenwerk, Dominik}, title = {Analysis of an urban grid with high photovoltaic and e-mobility penetration}, series = {Energies}, volume = {16}, journal = {Energies}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16083380}, pages = {18 Seiten}, year = {2023}, abstract = {This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility "Mobilit{\"a}t in Deutschland", which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30\% which reduces the average price of a charged kWh by 35\% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub.}, language = {en} } @incollection{KnocheKruskaWeberetal.2001, author = {Knoche, K. F. and Kruska, Martin and Weber, P. and Kuperjans, Isabel}, title = {Energiemanagement}, series = {Lexikon Nachhaltiges Wirtschaften. - (Lehr- und Handb{\"u}cher zur {\"o}kologischen Unternehmensf{\"u}hrung und Umwelt{\"o}konomie)}, booktitle = {Lexikon Nachhaltiges Wirtschaften. - (Lehr- und Handb{\"u}cher zur {\"o}kologischen Unternehmensf{\"u}hrung und Umwelt{\"o}konomie)}, editor = {Schulz, Werner F.}, publisher = {Oldenbourg}, address = {M{\"u}nchen [u.a.]}, isbn = {3-486-24523-6}, pages = {88 -- 92}, year = {2001}, language = {de} } @incollection{BouvyKuperjans2004, author = {Bouvy, C. and Kuperjans, Isabel}, title = {Mikro-Gasturbinen : eine neue Technologie zur Kraft-W{\"a}rme-Kopplung in kleinen und mittleren Unternehmen}, series = {Entwicklungslinien der Energietechnik 2004}, booktitle = {Entwicklungslinien der Energietechnik 2004}, edition = {CD-ROM-Ausg.}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, year = {2004}, language = {de} } @inproceedings{PauksztatKuperjansdeHesselle2006, author = {Pauksztat, Anja and Kuperjans, Isabel and de Hesselle, M.}, title = {Referenzformeln f{\"u}r Energiebedarf und CO2-Emissionen in der Glasindustrie}, series = {Energieeffizienz - Chancen f{\"u}r die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951)}, booktitle = {Energieeffizienz - Chancen f{\"u}r die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951)}, edition = {Nichtred. Ms.-Dr.}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-091951-5}, pages = {179 -- 190}, year = {2006}, language = {de} } @incollection{KruskaKuperjans1999, author = {Kruska, Martin and Kuperjans, Isabel}, title = {An{\´a}lisis Thermodin{\´a}micos : [Cap{\´i}tulo 3.3]}, series = {Uso racional de energ{\´i}a : eficiencia energ{\´e}tica y energ{\´i}as renovables. - (Manual para consultores y expertos)}, booktitle = {Uso racional de energ{\´i}a : eficiencia energ{\´e}tica y energ{\´i}as renovables. - (Manual para consultores y expertos)}, publisher = {Ministerio de Energ{\´i}a y Minas}, address = {Lima}, pages = {3.3-1 -- 3.3-15}, year = {1999}, language = {es} } @phdthesis{Kuperjans2000, author = {Kuperjans, Isabel}, title = {Verfahren zur Analyse und Bewertung industrieller Energieanlagen}, address = {Aachen}, pages = {Getr. Z{\"a}hlung : graph. Darst.}, year = {2000}, language = {de} }