@techreport{Drescher2024, type = {Working Paper}, author = {Drescher, Hans Paul}, title = {Critical review of the 1. Stokes' problem and consequences for mixed turbulent/laminar flow}, pages = {27 Seiten}, year = {2024}, abstract = {The "1. Stokes' problem", the "suddenly accelerated flat wall", is the oldest application of the Navier-Stokes equations. Stokes' solution of the "problem" does not comply with the mathematical theorem of Cauchy and Kowalewskaya on the "Uniqueness and Existence" of solutions of partial differential equations and violates the physical theorem of minimum entropy production/dissipation of the Thermodynamics of Irreversible Processes. The result includes very high local shear stresses and dissipation rates. That is of special interest for the theory of turbulent and mixed turbulent/laminar flow. A textbook solution of the "1. Stokes Problem" is the Couette flow, which has a constant sheer stress along a linear profile. A consequence is that the Navier-Stokes equations do not describe any S-shaped part of a turbulent profile found in any turbulent Couette experiment. The paper surveys arguments referring to that statement, concerning the history of >150 years. Contrary to this there is always a Navier-Stokes solution near the wall, observed by a linear part of the Couette profile. There a turbulent description (e.g. by the logarithmic law-of-the-wall) fails completely. That is explained by the minimum dissipation requirement together with the Couette feature τ = const. The local co-existence of a turbulent zone and a laminar zone near the wall is stable and observed also at high Reynolds-Numbers.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @article{SchoenrockMuckeltHastermannetal.2024, author = {Schoenrock, Britt and Muckelt, Paul E. and Hastermann, Maria and Albracht, Kirsten and MacGregor, Robert and Martin, David and Gunga, Hans-Christian and Salanova, Michele and Stokes, Maria J. and Warner, Martin B. and Blottner, Dieter}, title = {Muscle stiffness indicating mission crew health in space}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {Article number: 4196}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-024-54759-6}, pages = {13 Seiten}, year = {2024}, abstract = {Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.}, language = {en} } @inproceedings{WittigRuettersBragard2024, author = {Wittig, M. and R{\"u}tters, Ren{\´e} and Bragard, Michael}, title = {Application of RL in control systems using the example of a rotatory inverted pendulum}, series = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, booktitle = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-02-3}, doi = {10.33968/2024.53}, pages = {241 -- 248}, year = {2024}, abstract = {In this paper, the use of reinforcement learning (RL) in control systems is investigated using a rotatory inverted pendulum as an example. The control behavior of an RL controller is compared to that of traditional LQR and MPC controllers. This is done by evaluating their behavior under optimal conditions, their disturbance behavior, their robustness and their development process. All the investigated controllers are developed using MATLAB and the Simulink simulation environment and later deployed to a real pendulum model powered by a Raspberry Pi. The RL algorithm used is Proximal Policy Optimization (PPO). The LQR controller exhibits an easy development process, an average to good control behavior and average to good robustness. A linear MPC controller could show excellent results under optimal operating conditions. However, when subjected to disturbances or deviations from the equilibrium point, it showed poor performance and sometimes instable behavior. Employing a nonlinear MPC Controller in real time was not possible due to the high computational effort involved. The RL controller exhibits by far the most versatile and robust control behavior. When operated in the simulation environment, it achieved a high control accuracy. When employed in the real system, however, it only shows average accuracy and a significantly greater performance loss compared to the simulation than the traditional controllers. With MATLAB, it is not yet possible to directly post-train the RL controller on the Raspberry Pi, which is an obstacle to the practical application of RL in a prototyping or teaching setting. Nevertheless, RL in general proves to be a flexible and powerful control method, which is well suited for complex or nonlinear systems where traditional controllers struggle.}, language = {en} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} } @incollection{SchneiderWisselinkCzarneckietal.2024, author = {Schneider, Dominik and Wisselink, Frank and Czarnecki, Christian and N{\"o}lle, Nikolai}, title = {Benefits and framework conditions for information-driven business models concerning the Internet of Things}, series = {Digitalization in companies}, booktitle = {Digitalization in companies}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-39093-8 (Print)}, doi = {10.1007/978-3-658-39094-5_5}, pages = {59 -- 75}, year = {2024}, abstract = {In the context of the increasing digitalization, the Internet of Things (IoT) is seen as a technological driver through which completely new business models can emerge in the interaction of different players. Identified key players include traditional industrial companies, municipalities and telecommunications companies. The latter, by providing connectivity, ensure that small devices with tiny batteries can be connected almost anywhere and directly to the Internet. There are already many IoT use cases on the market that provide simplification for end users, such as Philips Hue Tap. In addition to business models based on connectivity, there is great potential for information-driven business models that can support or enhance existing business models. One example is the IoT use case Park and Joy, which uses sensors to connect parking spaces and inform drivers about available parking spaces in real time. Information-driven business models can be based on data generated in IoT use cases. For example, a telecommunications company can add value by deriving more decision-relevant information - called insights - from data that is used to increase decision agility. In addition, insights can be monetized. The monetization of insights can only be sustainable, if careful attention is taken and frameworks are considered. In this chapter, the concept of information-driven business models is explained and illustrated with the concrete use case Park and Joy. In addition, the benefits, risks and framework conditions are discussed.}, language = {en} } @article{MoehrenBergmannJanseretal.2024, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {Assessment of structural mechanical effects related to torsional deformations of propellers}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00737-7}, pages = {22 Seiten}, year = {2024}, abstract = {Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension-twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5\% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension-twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller's stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material.}, language = {en} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} }