@article{JensKaldenhoffKirschnerHermannsetal.2014, author = {Jens, Otto and Kaldenhoff, E. and Kirschner-Hermanns, R. and M{\"u}hl, Thomas and Klinge, Uwe}, title = {Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates}, series = {Journal of biomedical materials research. Part A}, volume = {102}, journal = {Journal of biomedical materials research. Part A}, number = {4}, publisher = {Wiley}, address = {New York}, issn = {1552-4965}, doi = {10.1002/jbm.a.34767}, pages = {1079 -- 1084}, year = {2014}, abstract = {Use of textile structures for reinforcement of pelvic floor structures has to consider mechanical forces to the implant, which are quite different to the tension free conditions of the abdominal wall. Thus, biomechanical analysis of textile devices has to include the impact of strain on stretchability and effective porosity. Prolift® and Prolift + M®, developed for tension free conditions, were tested by measuring stretchability and effective porosity applying mechanical strain. For comparison, we used Dynamesh-PR4®, which was designed for pelvic floor repair to withstand mechanical strain. Prolift® at rest showed moderate porosity with little stretchability but complete loss of effective porosity at strain of 4.9 N/cm. Prolift + M® revealed an increased porosity at rest, but at strain showed high stretchability, with subsequent loss of effective porosity at strain of 2.5 N/cm. Dynamesh PR4® preserved its high porosity even under strain, but as consequence of limited stretchability. Though in tension free conditions Prolift® and Prolift + M® can be considered as large pore class I meshes, application of mechanical strain rapidly lead to collapse of pores. The loss of porosity at mechanical stress can be prevented by constructions with high structural stability. Assessment of porosity under strain was found helpful to define requirements for pelvic floor devices. Clinical studies have to prove whether devices with high porosity as well as high structural stability can improve the patients' outcome.}, language = {en} } @article{WincklerKruegerSchnitzleretal.2014, author = {Winckler, Silvia and Krueger, Rolf and Schnitzler, Thomas and Zang, Werner and Fischer, Rainer and Biselli, Manfred}, title = {A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach}, series = {Bioprocess and biosystems engineering}, volume = {37}, journal = {Bioprocess and biosystems engineering}, number = {5}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1615-7591 (Print) 1615-7605 (Online)}, doi = {10.1007/s00449-013-1062-8}, pages = {901 -- 912}, year = {2014}, abstract = {Biopharmaceuticals such as antibodies are produced in cultivated mammalian cells, which must be monitored to comply with good manufacturing practice. We, therefore, developed a fully automated system comprising a specific exhaust gas analyzer, inline analytics and a corresponding algorithm to precisely determine the oxygen uptake rate, carbon dioxide evolution rate, carbon dioxide transfer rate, transfer quotient and respiratory quotient without interrupting the ongoing cultivation, in order to assess its reproducibility. The system was verified using chemical simulation experiments and was able to measure the respiratory activity of hybridoma cells and DG44 cells (derived from Chinese hamster ovary cells) with satisfactory results at a minimum viable cell density of ~2.0 × 10⁵ cells ml⁻¹. The system was suitable for both batch and fed-batch cultivations in bubble-aerated and membrane-aerated reactors, with and without the control of pH and dissolved oxygen.}, language = {en} } @article{BandodkarMolinnusMirzaetal.2014, author = {Bandodkar, Amay J. and Molinnus, Denise and Mirza, Omar and Guinovart, Tomas and Windmiller, Joshua R. and Valdes-Ramirez, Gabriela and Andrade, Francisco J. and Sch{\"o}ning, Michael Josef and Wang, Joseph}, title = {Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring}, series = {Biosensors and bioelectronics}, volume = {54}, journal = {Biosensors and bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (E-Journal); 0956-5663 (Print)}, doi = {10.1016/j.bios.2013.11.039}, pages = {603 -- 609}, year = {2014}, abstract = {This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.}, language = {en} } @article{Dikta2014, author = {Dikta, Gerhard}, title = {Asymptotically efficient estimation under semi-parametric random censorship models}, series = {Journal of multivariate analysis}, volume = {124}, journal = {Journal of multivariate analysis}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1095-7243 (E-Journal); 0047-259X (Print)}, doi = {10.1016/j.jmva.2013.10.002}, pages = {10 -- 24}, year = {2014}, abstract = {We study the estimation of some linear functionals which are based on an unknown lifetime distribution. The observations are assumed to be generated under the semi-parametric random censorship model (SRCM), that is, a random censorship model where the conditional expectation of the censoring indicator given the observation belongs to a parametric family. Under this setup a semi-parametric estimator of the survival function was introduced by the author. If the parametric model assumption is correct, it is known that the estimated functional which is based on this semi-parametric estimator is asymptotically at least as efficient as the corresponding one which rests on the nonparametric Kaplan-Meier estimator. In this paper we show that the estimated functional which is based on this semi-parametric estimator is asymptotically efficient with respect to the class of all regular estimators under this semi-parametric model.}, language = {en} } @article{KronhardtAlexopoulosReisseletal.2014, author = {Kronhardt, Valentina and Alexopoulos, Spiros and Reißel, Martin and Sattler, Johannes, Christoph and Hoffschmidt, Bernhard and H{\"a}nel, Matthias and Doerbeck, Till}, title = {High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model}, series = {Energy procedia}, volume = {49}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102 (E-Journal) ; 1876-6102 (Print)}, doi = {10.1016/j.egypro.2014.03.094}, pages = {870 -- 877}, year = {2014}, abstract = {This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants.}, language = {en} } @article{RauAlexopoulosBreitbachetal.2014, author = {Rau, Christoph and Alexopoulos, Spiros and Breitbach, Gerd and Hoffschmidt, Bernhard and Latzke, Markus and Sattler, Johannes, Christoph}, title = {Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow}, series = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, volume = {49}, journal = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.03.157}, pages = {1481 -- 1490}, year = {2014}, abstract = {In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100\%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated.}, language = {en} } @article{HeinzeMangPeteretal.2014, author = {Heinze, Daniel and Mang, Thomas and Peter, Karin and M{\"o}ller, Martin and Weichold, Oliver}, title = {Synthesis of low molecular weight poly(vinyl acetate) and its application as plasticizer}, series = {Journal of applied polymer science}, volume = {131}, journal = {Journal of applied polymer science}, number = {9}, publisher = {Wiley}, address = {New York}, issn = {1097-4628 (E-Journal); 0021-8995 (Print)}, doi = {10.1002/app.40226}, pages = {Article No. 40226}, year = {2014}, abstract = {Poly(vinyl acetate), PVAc, with a degree of polymerization Xn = 10 was prepared by chain-transfer radical polymerization using carbon tetrachloride and used as oligomeric plasticizer for commercial PVAc. However, the chlorinated chain ends cause a low thermal stability requiring mild Cl/H substitution. The product exhibits high thermal stability and excellent melt-compounding properties. Blends of oligomeric and commercial PVAc show single glass transition temperatures which decrease with higher oligomer content and exhibit small negative deviations from Fox' linear additivity rule. This indicates plasticization and miscibility being mainly due to entropic effects. Injection-moulded thick specimens show ductile behaviour at oligomer contents >10 wt \%, while sheets with a thickness of 0.2-0.5 mm appear flexible already at 7.5 wt \%. The oxygen permeability coefficients are an order of magnitude lower than those of low-density polyethylene. Due to the sum of their properties, the plasticized sheets present a promising alternative in the preparation of barrier materials.}, language = {en} } @article{WangDruckenmuellerElbersetal.2014, author = {Wang, Ren-Qi and Druckenm{\"u}ller, Katharina and Elbers, Gereon and Guenther, Klaus and Crou{\´e}, Jean-Philippe}, title = {Analysis of aquatic-phase natural organic matter by optimized LDI-MS method}, series = {Journal of mass spectrometry}, volume = {49}, journal = {Journal of mass spectrometry}, number = {2}, publisher = {Wiley}, address = {Bognor Regis}, issn = {1096-9888}, doi = {10.1002/jms.3321}, pages = {154 -- 160}, year = {2014}, abstract = {The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{SchroeterHoffmannVoigtetal.2014, author = {Schroeter, Rebecca and Hoffmann, Tamara and Voigt, Birgit and Meyer, Hanna and Bleisteiner, Monika and Muntel, Jan and J{\"u}rgen, Britta and Albrecht, Dirk and Becher, D{\"o}rte and Lalk, Michael and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Putzer, Harald and Hecker, Michael and Schweder, Thomas and Bremer, Erhard}, title = {Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0080956}, pages = {e80956}, year = {2014}, abstract = {The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.}, language = {en} } @article{ArinkinDigelPorstetal.2014, author = {Arinkin, Vladimir and Digel, Ilya and Porst, Dariusz and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application}, series = {BMC bioinformatics}, volume = {15}, journal = {BMC bioinformatics}, number = {55}, issn = {1471-2105}, doi = {10.1186/1471-2105-15-55}, pages = {1 -- 8}, year = {2014}, abstract = {Background True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with technical/optical methods and artificial neural networks (ANN). Results Fluorescence microscopy images of leaflet cross sections have been taken from a set of five date palm tree cultivars (Hewlat al Jouf, Khlas, Nabot Soltan, Shishi, Um Raheem). After features extraction from images, the obtained data have been fed in a multilayer perceptron ANN with backpropagation learning algorithm. Conclusions Overall, an accurate result in prediction and differentiation of date palm tree cultivars was achieved with average prediction in tenfold cross-validation is 89.1\% and reached 100\% in one of the best ANN.}, language = {en} }