@incollection{KallweitGottschalkWalenta2016, author = {Kallweit, Stephan and Gottschalk, Michael and Walenta, Robert}, title = {ROS based safety concept for collaborative robots in industrial applications}, series = {Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371)}, booktitle = {Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371)}, publisher = {Springer}, address = {Cham}, organization = {International Conference on Robotics in Alpe-Adria-Danube Region <24, 2015, Bucharest>}, isbn = {978-3-319-21289-0 (Print) ; 978-3-319-21290-6 (E-Book)}, doi = {10.1007/978-3-319-21290-6_3}, pages = {27 -- 35}, year = {2016}, abstract = {The production and assembly of customized products increases the demand for flexible automation systems. One approach is to remove the safety fences that separate human and industrial robot to combine their skills. This collaboration possesses a certain risk for the human co-worker, leading to numerous safety concepts to protect him. The human needs to be monitored and tracked by a safety system using different sensors. The proposed system consists of a RGBD camera for surveillance of the common working area, an array of optical distance sensors to compensate shadowing effects of the RGBD camera and a laser range finder to detect the co-worker when approaching the work cell. The software for collision detection, path planning, robot control and predicting the behaviour of the co-worker is based on the Robot Operating System (ROS). A first prototype of the work cell shows that with advanced algorithms from the field of mobile robotics a very flexible safety concept can be realized: the robot not simply stops its movement when detecting a collision, but plans and executes an alternative path around the obstacle.}, language = {en} } @inproceedings{AlhwarinFerreinGebhardtetal.2015, author = {Alhwarin, Faraj and Ferrein, Alexander and Gebhardt, Andreas and Kallweit, Stephan and Scholl, Ingrid and Tedjasukmana, Osmond Sanjaya}, title = {Improving additive manufacturing by image processing and robotic milling}, series = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, booktitle = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, doi = {10.1109/CoASE.2015.7294217}, pages = {924 -- 929}, year = {2015}, language = {en} } @incollection{GoeckelSchifferWagneretal.2015, author = {Goeckel, Tom and Schiffer, Stefan and Wagner, Hermann and Lakemeyer, Gerhard}, title = {The Video Conference Tool Robot ViCToR}, series = {Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II}, booktitle = {Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II}, publisher = {Springer}, isbn = {978-3-319-22876-1}, doi = {10.1007/978-3-319-22876-1_6}, pages = {61 -- 73}, year = {2015}, abstract = {We present a robotic tool that autonomously follows a conversation to enable remote presence in video conferencing. When humans participate in a meeting with the help of video conferencing tools, it is crucial that they are able to follow the conversation both with acoustic and visual input. To this end, we design and implement a video conferencing tool robot that uses binaural sound source localization as its main source to autonomously orient towards the currently talking speaker. To increase robustness of the acoustic cue against noise we supplement the sound localization with a source detection stage. Also, we include a simple onset detector to retain fast response times. Since we only use two microphones, we are confronted with ambiguities on whether a source is in front or behind the device. We resolve these ambiguities with the help of face detection and additional moves. We tailor the system to our target scenarios in experiments with a four minute scripted conversation. In these experiments we evaluate the influence of different system settings on the responsiveness and accuracy of the device.}, language = {en} } @inproceedings{KrueckelNoldenFerreinetal.2015, author = {Kr{\"u}ckel, Kai and Nolden, Florian and Ferrein, Alexander and Scholl, Ingrid}, title = {Intuitive visual teleoperation for UGVs using free-look augmented reality displays}, series = {2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA}, booktitle = {2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA}, doi = {10.1109/ICRA.2015.7139809}, pages = {4412 -- 4417}, year = {2015}, language = {en} } @incollection{NiemuellerReuterEwertetal.2015, author = {Niemueller, Tim and Reuter, Sebastian and Ewert, Daniel and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Decisive Factors for the Success of the Carologistics RoboCup Team in the RoboCup Logistics League 2014}, series = {RoboCup 2014: Robot World Cup XVIII}, booktitle = {RoboCup 2014: Robot World Cup XVIII}, publisher = {Springer}, isbn = {978-3-319-18615-3}, pages = {155 -- 167}, year = {2015}, language = {en} } @inproceedings{LeingartnerMaurerSteinbaueretal.2013, author = {Leingartner, Max and Maurer, Johannes and Steinbauer, Gerald and Ferrein, Alexander}, title = {Evaluation of sensors and mapping approaches for disasters in tunnels}, series = {IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden}, booktitle = {IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4799-0879-0}, pages = {1 -- 7}, year = {2013}, language = {en} } @inproceedings{NiemuellerReuterEwertetal.2016, author = {Niemueller, Tim and Reuter, Sebastian and Ewert, Daniel and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_4}, pages = {47 -- 59}, year = {2016}, language = {en} } @inproceedings{NiemuellerReuterFerreinetal.2016, author = {Niemueller, Tim and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_3}, pages = {31 -- 43}, year = {2016}, language = {en} } @inproceedings{NiemuellerReuterFerrein2016, author = {Niemueller, Tim and Reuter, Sebastian and Ferrein, Alexander}, title = {Fawkes for the RoboCup Logistics League}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_31}, pages = {365 -- 373}, year = {2016}, language = {en} } @inproceedings{LimpertSchifferFerrein2015, author = {Limpert, Nicolas and Schiffer, Stefan and Ferrein, Alexander}, title = {A Local Planner for Ackermann-Driven Vehicles in ROS SBPL}, series = {Proceedings of the International Conference on Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2015}, booktitle = {Proceedings of the International Conference on Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2015}, doi = {10.1109/RoboMech.2015.7359518}, pages = {172 -- 177}, year = {2015}, language = {en} } @article{LeingartnerMaurerFerreinetal.2016, author = {Leingartner, Max and Maurer, Johannes and Ferrein, Alexander and Steinbauer, Gerald}, title = {Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels}, series = {Journal of Field Robotics}, volume = {33}, journal = {Journal of Field Robotics}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1556-4967}, doi = {10.1002/rob.21611}, pages = {1037 -- 1057}, year = {2016}, abstract = {Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search.}, language = {en} } @inproceedings{FerreinMaierMuehlbacheretal.2015, author = {Ferrein, Alexander and Maier, Christopher and M{\"u}hlbacher, Clemens and Niemueller, Tim and Steinbauer, Gerald and Vassos, Stravros}, title = {Controlling Logistics Robots with the Action-based Language YAGI}, series = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, booktitle = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, year = {2015}, language = {en} } @inproceedings{FerreinMaierMuehlbacheretal.2016, author = {Ferrein, Alexander and Maier, Christopher and M{\"u}hlbacher, Clemens and Niem{\"u}ller, Tim and Steinbauer, Gerald and Vassos, Stravros}, title = {Controlling logistics robots with the action-based language YAGI}, series = {Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I}, volume = {9834}, booktitle = {Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I}, publisher = {Springer}, isbn = {978-3-319-43505-3 (Print)}, doi = {10.1007/978-3-319-43506-0_46}, pages = {525 -- 537}, year = {2016}, language = {en} } @inproceedings{MatareSchifferFerrein2019, author = {Matar{\´e}, Victor and Schiffer, Stefan and Ferrein, Alexander}, title = {golog++ : An integrative system design}, series = {CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018}, booktitle = {CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018}, editor = {Steinbauer, Gerald and Ferrein, Alexander}, issn = {1613-0073}, pages = {29 -- 35}, year = {2019}, language = {en} } @inproceedings{HofmannLimpertMatareetal.2019, author = {Hofmann, Till and Limpert, Nicolas and Matar{\´e}, Victor and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning}, series = {RoboCup 2019: Robot World Cup XXIII. RoboCup}, booktitle = {RoboCup 2019: Robot World Cup XXIII. RoboCup}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-35699-6}, doi = {10.1007/978-3-030-35699-6_41}, pages = {504 -- 516}, year = {2019}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, abstract = {Project work and inter disciplinarity are integral parts of today's engineering work. It is therefore important to incorporate these aspects into the curriculum of academic studies of engineering. At the faculty of Electrical Engineering and Information Technology an interdisciplinary project is part of the bachelor program to address these topics. Since the summer term 2020 most courses changed to online mode during the Covid-19 crisis including the interdisciplinary projects. This online mode introduces additional challenges to the execution of the projects, both for the students as well as for the lecture. The challenges, but also the risks and chances of this kind of project courses are subject of this paper, based on five different interdisciplinary projects}, language = {en} } @inproceedings{SchollBartellaMoluluoetal.2019, author = {Scholl, Ingrid and Bartella, Alex and Moluluo, Cem and Ertural, Berat and Laing, Frederic and Suder, Sebastian}, title = {MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25326-4}, doi = {10.1007/978-3-658-25326-4_32}, pages = {152 -- 157}, year = {2019}, language = {en} } @inproceedings{WiesenEngemannLimpertetal.2018, author = {Wiesen, Patrick and Engemann, Heiko and Limpert, Nicolas and Kallweit, Stephan}, title = {Learning by Doing - Mobile Robotics in the FH Aachen ROS Summer School}, series = {European Robotics Forum 2018, TRROS18 Workshop}, booktitle = {European Robotics Forum 2018, TRROS18 Workshop}, pages = {47 -- 58}, year = {2018}, language = {en} } @inproceedings{AlhwarinFerreinScholl2019, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {An Efficient Hashing Algorithm for NN Problem in HD Spaces}, series = {Lecture Notes in Computer Science}, booktitle = {Lecture Notes in Computer Science}, isbn = {978-303005498-4}, doi = {10.1007/978-3-030-05499-1_6}, pages = {101 -- 115}, year = {2019}, language = {en} } @inproceedings{KirschMatareFerreinetal.2020, author = {Kirsch, Maximilian and Matar{\´e}, Victor and Ferrein, Alexander and Schiffer, Stefan}, title = {Integrating golog++ and ROS for Practical and Portable High-level Control}, series = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, booktitle = {Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, doi = {10.5220/0008984406920699}, pages = {692 -- 699}, year = {2020}, abstract = {The field of Cognitive Robotics aims at intelligent decision making of autonomous robots. It has matured over the last 25 or so years quite a bit. That is, a number of high-level control languages and architectures have emerged from the field. One concern in this regard is the action language GOLOG. GOLOG has been used in a rather large number of applications as a high-level control language ranging from intelligent service robots to soccer robots. For the lower level robot software, the Robot Operating System (ROS) has been around for more than a decade now and it has developed into the standard middleware for robot applications. ROS provides a large number of packages for standard tasks in robotics like localisation, navigation, and object recognition. Interestingly enough, only little work within ROS has gone into the high-level control of robots. In this paper, we describe our approach to marry the GOLOG action language with ROS. In particular, we present our architecture on inte grating golog++, which is based on the GOLOG dialect Readylog, with the Robot Operating System. With an example application on the Pepper service robot, we show how primitive actions can be easily mapped to the ROS ActionLib framework and present our control architecture in detail.}, language = {en} }