@article{AnikFrohbergKapoor1983, author = {Anik, Sabri and Frohberg, Martin G. and Kapoor, Madan Lal}, title = {Prediction of thermodynamic properties of oxygen in binary metallic solvents}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {74}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {6}, issn = {0044-3093}, pages = {372 -- 375}, year = {1983}, language = {en} } @article{AnikKapoorFrohberg1983, author = {Anik, Sabri and Kapoor, Madan Lal and Frohberg, Martin G.}, title = {Thermodynamic behaviour of oxygen in molten substitutional alloy solvents}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {74}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {1}, issn = {0044-3093}, pages = {53 -- 58}, year = {1983}, language = {en} } @article{BeckenbachScheidweiler2016, author = {Beckenbach, Isabel and Scheidweiler, Robert}, title = {Perfect ƒ-Matchings and ƒ-Factors in Hypergraphs - A Combinatorial Approach}, series = {Discrete Mathematics}, volume = {240}, journal = {Discrete Mathematics}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2192-7782}, doi = {10.1016/j.disc.2017.05.005}, pages = {2499 -- 2506}, year = {2016}, abstract = {We prove characterizations of the existence of perfect ƒ-matchings in uniform mengerian and perfect hypergraphs. Moreover, we investigate the ƒ-factor problem in balanced hypergraphs. For uniform balanced hypergraphs we prove two existence theorems with purely combinatorial arguments, whereas for non-uniform balanced hypergraphs we show that the ƒ-factor problem is NP-hard.}, language = {en} } @article{BraunChengDoweyetal.2021, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Performance evaluation of skill-based order-assignment in production environments with multi-agent systems}, series = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, journal = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, number = {Early Access}, publisher = {IEEE}, address = {New York}, issn = {2687-9735}, doi = {10.1109/JESTIE.2021.3108524}, year = {2021}, abstract = {The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models.}, language = {en} } @article{BucurLazarescuPopetal.2019, author = {Bucur, Alexandru and Lazarescu, Lucian and Pop, Grigore Marian and Achimas, Gheorghe and Gebhardt, Andreas}, title = {Tribological performance of biodegradable lubricants under different surface roughness of tools}, series = {Academic Journal of Manufacturing Engineering}, volume = {17}, journal = {Academic Journal of Manufacturing Engineering}, number = {1}, issn = {1583-7904}, pages = {172 -- 178}, year = {2019}, language = {en} } @article{CosmaKesslerGebhardtetal.2020, author = {Cosma, Cosmin and Kessler, Julia and Gebhardt, Andreas and Campbell, Ian and Balc, Nicolae}, title = {Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed}, series = {Materials}, volume = {13}, journal = {Materials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13040905}, pages = {1 -- 18}, year = {2020}, abstract = {To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10\% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250-1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20\% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L.}, language = {en} } @article{DiltheyBrandenburgSchleser2004, author = {Dilthey, Ulrich and Brandenburg, Annette and Schleser, Markus}, title = {Dispensing and application of unfilled adhesives in the micro range}, series = {Welding and cutting. 3 (2004), H. 4}, journal = {Welding and cutting. 3 (2004), H. 4}, issn = {1612-3433}, pages = {250 -- 254}, year = {2004}, language = {en} } @article{DiltheySchleserFeldmannetal.2008, author = {Dilthey, Ulrich and Schleser, Markus and Feldmann, Martin and Pak, Daniel and Geßler, Achim}, title = {Investigation of punctiform, plane and hybrid joints of textile-reinforced concrete parts}, series = {Cement and concrete composites}, volume = {Vol. 30}, journal = {Cement and concrete composites}, number = {iss. 2}, issn = {0958-9465}, pages = {82 -- 87}, year = {2008}, language = {en} } @article{DuesGebhardtKallweitetal.1994, author = {Dues, M. and Gebhardt, Andreas and Kallweit, Stephan and Scheffler, T. and Siekmann, H. and Uchiyama, T.}, title = {Flow Visualization in a Cavitating Flow}, series = {Proceedings of the German-Japanese Symposium on Multi-Phase Flow : Karlsruhe, Germany, August 23 - 25, 1994 / comp. by U. M{\"u}ller ...}, journal = {Proceedings of the German-Japanese Symposium on Multi-Phase Flow : Karlsruhe, Germany, August 23 - 25, 1994 / comp. by U. M{\"u}ller ...}, publisher = {Kernforschungszentrum Karlsruhe}, address = {Karlsruhe}, pages = {391 -- 402}, year = {1994}, language = {en} } @article{EngemannCoenenDawaretal.2021, author = {Engemann, Heiko and C{\"o}nen, Patrick and Dawar, Harshal and Du, Shengzhi and Kallweit, Stephan}, title = {A robot-assisted large-scale inspection of wind turbine blades in manufacturing using an autonomous mobile manipulator}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199271}, pages = {1 -- 22}, year = {2021}, abstract = {Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human-robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.}, language = {en} }