@inproceedings{SchwagerAngeleNourietal.2022, author = {Schwager, Christian and Angele, Florian and Nouri, Bijan and Schwarzb{\"o}zl, Peter and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.675}, pages = {9 Seiten}, year = {2022}, abstract = {Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted.}, language = {en} } @inproceedings{SchulteSchwagerFrantzetal.2022, author = {Schulte, Jonas and Schwager, Christian and Frantz, Cathy and Schloms, Felix and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios}, series = {SolarPACES conference proceedings}, booktitle = {SolarPACES conference proceedings}, number = {Vol. 1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.693}, pages = {9 Seiten}, year = {2022}, abstract = {A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2021, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Caminos, R.A. Chico and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating Solar Power}, series = {Earth systems and environmental sciences}, booktitle = {Earth systems and environmental sciences}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-409548-9}, doi = {10.1016/B978-0-12-819727-1.00089-3}, year = {2021}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {Solar Paces 2020}, booktitle = {Solar Paces 2020}, pages = {1 -- 10}, year = {2020}, language = {en} } @inproceedings{SattlerChicoCaminosAttietal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and Atti, Vikrama Nagababu and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage}, series = {AIP Conference Proceedings 2303}, booktitle = {AIP Conference Proceedings 2303}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/5.0029277}, pages = {160004}, year = {2020}, language = {de} } @inproceedings{SattlerCaminosUerlingsetal.2020, author = {Sattler, Johannes, Christoph and Caminos, Ricardo Alexander Chico and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Nagababu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, language = {en} } @inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, language = {en} } @inproceedings{BreitbachAlexopoulosMayetal.2019, author = {Breitbach, Gerd and Alexopoulos, Spiros and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Analysis of volumetric solar radiation absorbers made of wire meshes}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117521}, pages = {030009-1 -- 030009-6}, year = {2019}, language = {en} } @inproceedings{MahdiRendonSchwageretal.2019, author = {Mahdi, Zahra and Rend{\´o}n, Carlos and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Novel concept for indirect solar-heated methane reforming}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/1.5117694}, pages = {180014-1 -- 180014-7}, year = {2019}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @inproceedings{SattlerAlexopoulosCaminosetal.2019, author = {Sattler, Johannes, Christoph and Alexopoulos, Spiros and Caminos, Ricardo Alexander Chico and Mitchell, John C. and Ruiz, Victor C. and Kalogirou, Soteris and Ktistis, Panayiotis K. and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation model of a parabolic trough collector system with concrete thermal energy storage for process steam generation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117663}, pages = {150007-1 -- 150007-8}, year = {2019}, language = {en} } @inproceedings{SchwagerTeixeiraBouraFleschetal.2019, author = {Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Flesch, Robert and Alexopoulos, Spiros and Herrmann, Ulf}, title = {Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, number = {1}, isbn = {978-0-7354-1866-0}, doi = {10.1063/1.5117566}, pages = {030054-1 -- 030054-8}, year = {2019}, language = {en} } @inproceedings{RendonDieckmannWeidleetal.2018, author = {Rendon, Carlos and Dieckmann, Simon and Weidle, Mathias and Dersch, J{\"u}rgen and Teixeira Boura, Cristiano Jos{\´e} and Polklas, Thomas and Kuschel, Marcus and Herrmann, Ulf}, title = {Retrofitting of existing parabolic trough collector power plants with molten salt tower systems}, series = {AIP Conference Proceedings}, volume = {2033}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.5067030}, pages = {030014-1 -- 030014-8}, year = {2018}, language = {en} } @article{PuppeGiulianoFrantzetal.2018, author = {Puppe, Michael and Giuliano, Stefano and Frantz, Cathy and Uhlig, Ralf and Schumacher, Ralph and Ibraheem, Wagdi and Schmalz, Stefan and Waldmann, Barbara and Guder, Christoph and Peter, Dennis and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Alexopoulos, Spiros and Spiegel, Michael and Wortmann, J{\"u}rgen and Hinrichs, Matthias and Engelhard, Manfred and Aust, Michael}, title = {Techno-economic optimization of molten salt solar tower plants}, series = {AIP Conference Proceedings art.no. 040033}, volume = {2033}, journal = {AIP Conference Proceedings art.no. 040033}, number = {Issue 1}, publisher = {AIP Publishing}, address = {Melville, NY}, doi = {10.1063/1.5067069}, year = {2018}, abstract = {In this paper the results of a techno-economic analysis of improved and optimized molten salt solar tower plants (MSSTP plants) are presented. The potential improvements that were analyzed include different receiver designs, different designs of the HTF-system and plant control, increased molten salt temperatures (up to 640°C) and multi-tower systems. Detailed technological and economic models of the solar field, solar receiver and high temperature fluid system (HTF-system) were developed and used to find potential improvements compared to a reference plant based on Solar Two technology and up-to-date cost estimations. The annual yield model calculates the annual outputs and the LCOE of all variants. An improved external tubular receiver and improved HTF-system achieves a significant decrease of LCOE compared to the reference. This is caused by lower receiver cost as well as improvements of the HTF-system and plant operation strategy, significantly reducing the plant own consumption. A novel star receiver shows potential for further cost decrease. The cavity receiver concepts result in higher LCOE due to their high investment cost, despite achieving higher efficiencies. Increased molten salt temperatures seem possible with an adapted, closed loop HTF-system and achieve comparable results to the original improved system (with 565°C) under the given boundary conditions. In this analysis all multi tower systems show lower economic viability compared to single tower systems, caused by high additional cost for piping connections and higher cost of the receivers. REFERENCES}, language = {en} } @inproceedings{TeixeiraBouraNiederwestbergMcLeodetal.2016, author = {Teixeira Boura, Cristiano Jos{\´e} and Niederwestberg, Stefan and McLeod, Jacqueline and Herrmann, Ulf and Hoffschmidt, Bernhard}, title = {Development of heat exchanger for high temperature energy storage with bulk materials}, series = {AIP Conference Proceedings}, volume = {1734}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4949106}, pages = {050008-1 -- 050008-7}, year = {2016}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, P. and Hilger, Patrick}, title = {Concentrating solar power}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087872-0}, doi = {10.1016/B978-0-08-087872-0.00319-X}, pages = {595 -- 636}, year = {2012}, language = {en} } @inproceedings{BaumannTeixeiraBouraEcksteinetal.2012, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and Eckstein, Julian and Dabrowski, Jan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Properties of bulk materials for high-temperature air-sand heat exchangers}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, isbn = {978-1-61839-364-7}, pages = {1270 -- 1278}, year = {2012}, language = {en} } @inproceedings{AnderssonAhlbrinkGalletal.2011, author = {Andersson, J. and Ahlbrink, N. and Gall, Jan and Hirsch, T. and Nolte, V. and Teixeira Boura, Cristiano Jos{\´e}}, title = {VICERP - dynamische Simulation von Solarturmkraftwerken}, series = {Forschung und Entwicklung f{\"u}r solarthermische Kraftwerke : 14. K{\"o}lner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus J{\"u}lich der FH Aachen : Kurzfassungen der Vortr{\"a}ge und Poster}, booktitle = {Forschung und Entwicklung f{\"u}r solarthermische Kraftwerke : 14. K{\"o}lner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus J{\"u}lich der FH Aachen : Kurzfassungen der Vortr{\"a}ge und Poster}, publisher = {DLR}, address = {K{\"o}ln}, pages = {2 S.}, year = {2011}, language = {de} } @inproceedings{BaumannTeixeiraBouraEcksteinetal.2011, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and Eckstein, Julian and Felinks, Jan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Air-sand heat exchanger}, series = {6th International Renewable Energy Storage Conference (IRES 2011) : November 28 - 30, 2011, bcc Berlin Congress Center, Berlin, Germany / EUROSOLAR ...}, booktitle = {6th International Renewable Energy Storage Conference (IRES 2011) : November 28 - 30, 2011, bcc Berlin Congress Center, Berlin, Germany / EUROSOLAR ...}, publisher = {Eurosolar}, address = {Bonn}, pages = {1 CD-ROM}, year = {2011}, language = {de} }