@article{JahnkeMenzelDusschotenetal.2009, author = {Jahnke, Siegfried and Menzel, Marion I. and Dusschoten, Dagmar van and Roeb, Gerhard W. and B{\"u}hler, Jonas and Minwuyelet, Senay and Bl{\"u}mler, Peter and Temperton, Vicky M. and Hombach, Thomas and Streun, Matthias and Beer, Simone and Khodaverdi, Maryam and Ziemons, Karl and Coenen, Heinz H. and Schurr, Ulrich}, title = {Combined MRI-PET dissects dynamic changes in plant structures and functions}, series = {The Plant Journal}, volume = {59}, journal = {The Plant Journal}, number = {4}, publisher = {Wiley}, address = {Weinheim}, isbn = {1365-313X}, pages = {634 -- 644}, year = {2009}, abstract = {Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.}, language = {en} } @article{WedrowskiBruyndonckxTavernieretal.2009, author = {Wedrowski, M. and Bruyndonckx, P. and Tavernier, S. and Zhi, L. and Dang, J. and Mendes, P. R. and Perez, J. M. and Ziemons, Karl}, title = {Robustness of neural networks algorithm for gamma detection in monolithic block detector, positron emission tomography}, series = {2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, journal = {2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, isbn = {1082-3654}, pages = {2625 -- 2628}, year = {2009}, abstract = {The monolithic scintillator block approach for gamma detection in the Positron Emission Tomography (PET) avoids estimating Depth of Interaction (DOI), reduces dead zones in detector and diminishes costs of detector production. Neural Networks (NN) are very efficient to determine the entrance point of a gamma incident on a scintillator block. This paper presents results on the robustness of the spatial resolution as a function of the random fraction in the data, temperature and HV fluctuations. This is important when implementing the method in a real scanner. Measurements were done with two Hamamatsu S8550 APD arrays, glued on a 20 {\~A}— 20 {\~A}— 10 mm3 monolithic LSO crystal block.}, language = {en} } @article{StreunLarueParletal.2009, author = {Streun, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {A compact PET detector readout using charge-to-time conversion}, series = {2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, journal = {2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {1082-3654}, pages = {1868 -- 1870}, year = {2009}, abstract = {The readout of gamma detectors is considerably simplified when the event intensity is encoded as a pulse width (Pulse Width Modulation, PWM). Time-to-Digital-Converters (TDC) replace the conventional ADCs and multiple TDCs can be realized easily in one PLD chip (Programmable Logic Device). The output of a PWM stage is only one digital signal per channel which is well suited for transport so that further processing can be performed apart from the detector. This is particularly interesting for large systems with high channel density (e.g. high resolution scanners). In this work we present a circuit with a linear transfer function that requires a minimum of components by performing the PWM already in the preamp stage. This allows a very compact and also cost-efficient implementation of the front-end electronics.}, language = {en} } @incollection{BoonzaaijerHelmig2009, author = {Boonzaaijer, Karel and Helmig, Ilka}, title = {2D Room : cardboard installation}, series = {Papercraft [1] : design and art with paper}, booktitle = {Papercraft [1] : design and art with paper}, publisher = {Gestalten Verlag}, address = {Berlin}, isbn = {978-3-89955-251-5}, pages = {206}, year = {2009}, subject = {Papierkunst}, language = {en} } @article{StreunBrandenburgLarueetal.2001, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse recording by free-running sampling}, series = {IEEE Transactions on Nuclear Science}, volume = {48}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {524 -- 526}, year = {2001}, abstract = {Pulses from a position-sensitive photomultiplier (PS-PMT) are recorded by free-running ADCs at a sampling rate of 40 MHz. A four-channel acquisition board has been developed which is equipped with four 12-bit ADCs connected to one field programmable gate array (FPGA). The FPGA manages data acquisition and the transfer to the host computer. It can also work as a digital trigger, so a separate hardware trigger can be omitted. The method of free-running sampling provides a maximum of information, besides the pulse charge and amplitude also pulse shape and starting time are contained in the sampled data. This information is crucial for many tasks such as distinguishing between different scintillator materials, determination of radiation type, pile-up recovery, coincidence detection or time-of-flight applications. The absence of an analog integrator allows very high count rates to be dealt with. Since this method is to be employed in positron emission tomography (PET), the position of an event is also important. The simultaneous readout of four channels allows localization by means of center-of-gravity weighting. First results from a test setup with LSO scintillators coupled to the PS-PMT are presented here}, language = {en} } @article{HeinrichBlumBussmannetal.2002, author = {Heinrich, U. and Blum, A. and Bussmann, N. and Engels, R. and Kemmerling, G. and Weber, S. and Ziemons, Karl}, title = {Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {486}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {60 -- 66}, year = {2002}, abstract = {The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35\% by mechanical polishing the surface compared to 100±5\% for raw crystals. Etching the surface increased the light output to 441±29\%. The untreated crystals had an energy resolution of 24.6±4.0\%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8\%, by etching of 14.8±0.7\%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57\% for mechanically polished and 895±61\% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2\% for mechanically polished and 12.2±0.3\% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {A PET system with free running ADCs}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {486}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {18 -- 21}, year = {2002}, abstract = {A small PET system has been built up with two multichannel photomultipliers, which are attached to a matrix of 64 single LSO crystals each. The signal from each multiplier is being sampled continuously by a 12 bit ADC at a sampling frequency of 40 MHz. In case of a scintillation pulse a subsequent FPGA sends the corresponding set of samples together with the channel information and a time mark to the host computer. The data transfer is performed with a rate of 20 MB/s. On the host all necessary information is extracted from the data. The pulse energy is determined, coincident events are detected and multiple hits within one matrix can be identified. In order to achieve a narrow time window the pulse starting time is refined further than the resolution of the time mark (=25 ns) would allow. This is possible by interpolating between the pulse samples. First data obtained from this system will be presented. The system is part of developments for a much larger system and has been created to study the feasibility and performance of the technique and the hardware architecture.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Coincidence detection by digital processing of free-running sampled pulses}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {487}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {3}, isbn = {0168-9002}, pages = {530 -- 534}, year = {2002}, abstract = {Coincident events in two scintillator crystals coupled to photomultipliers (PMT) are detected by processing just the digital data of the recorded pulses. For this purpose the signals from both PMTs are continuously sampled by free-running ADCs at a sampling rate of 40 MHz. For each sampled pulse the starting time is determined by processing the pulse data. Even a fairly simple interpolating algorithm results in a FWHM of about 2 ns.}, language = {en} } @article{KhodaverdiPaulySchroderetal.2002, author = {Khodaverdi, M. and Pauly, F. and Schroder, G. and Ziemons, Karl and Sievering, R. and Halling, H.}, title = {Preliminary studies of a micro-CT for a combined small animal PET/CT scanner}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1605 -- 1606}, year = {2002}, abstract = {We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {A PET system based on data processing of free-running sampled pulses}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, issn = {1082-3654}, pages = {693 -- 694}, year = {2002}, abstract = {Within the developments for the Crystal Clear small animal PET project (CLEARPET) a dual head PET system has been established. The basic principle is the early digitization of the detector pulses by free running ADCs. The determination of the γ-energy and also the coincidence detection is performed by data processing of the sampled pulses on the host computer. Therefore a time mark is attached to each pulse identifying the current cycle of the 40 MHz sampling clock. In order to refine the time resolution the pulse starting time is interpolated from the samples of the pulse rise. The detector heads consist of multichannel PMTs with a single LSO scintillator crystal coupled to each channel. For each PMT only one ADC is required. The position of an event is obtained separately from trigger signals generated for each single channel. An FPGA is utilized for pulse buffering, generation of the time mark and for the data transfer to the host via a fast I/O-interface.}, language = {en} }