@article{HoettgesFeldhausBrockhausetal.1992, author = {H{\"o}ttges, J{\"o}rg and Feldhaus, R. and Brockhaus, T. and Rouv{\´e}, Gerhard}, title = {Finite Element Simulation of Flow and Pollution Transport applied to a Part of the River Rhine / Feldhaus, R.; J. H{\"o}ttges, T. Brockhaus; G. Rouv{\´e}}, series = {Hydraulic and environmental modelling : proceedings of the Second International Conference on Hydraulic and Environmental Modelling of Coastal, Estuarine, and River Waters / [IAHR-AIRH]. Ed. by R. A. Falconer}, journal = {Hydraulic and environmental modelling : proceedings of the Second International Conference on Hydraulic and Environmental Modelling of Coastal, Estuarine, and River Waters / [IAHR-AIRH]. Ed. by R. A. Falconer}, publisher = {Ashgate}, address = {Aldershot, Hants, UK [u.a.]}, year = {1992}, language = {en} } @article{HoettgesArnoldRouve1992, author = {H{\"o}ttges, J{\"o}rg and Arnold, Uwe and Rouv{\´e}, Gerhard}, title = {Profiles of Mixing Coefficient in Compound Open Channel}, series = {Flow modeling and turbulence measurements : [... a collection of lectures and papers presented at the Fourth International Symposium on Refined Flow Modelling and Turbulence Measurements held in Wuhan, People's Republic of China, on September 20-23, 1990]}, journal = {Flow modeling and turbulence measurements : [... a collection of lectures and papers presented at the Fourth International Symposium on Refined Flow Modelling and Turbulence Measurements held in Wuhan, People's Republic of China, on September 20-23, 1990]}, publisher = {Hemisphere Publ. Corp.}, address = {Washington, DC [u.a.]}, isbn = {1-56032-209-8}, pages = {XVII, 773 S. : graph. Darst.}, year = {1992}, language = {en} } @article{HoettgesArnoldRouve1994, author = {H{\"o}ttges, J{\"o}rg and Arnold, Uwe and Rouv{\´e}, Gerhard}, title = {Measurement of transverse mixing using digital image acquisition}, series = {Mixing and transport in the environment : a memorial volume for Catherine M. Allen (1954-1991) / ed. by Keith J. Beven}, journal = {Mixing and transport in the environment : a memorial volume for Catherine M. Allen (1954-1991) / ed. by Keith J. Beven}, publisher = {Wiley}, address = {Chichester [u.a.]}, isbn = {0471941425}, pages = {XVI, 458 S., [8] Bl : Ill. (z.T. farb.), graph. Da}, year = {1994}, language = {en} } @article{HoettgesArnoldRouve1989, author = {H{\"o}ttges, J{\"o}rg and Arnold, Uwe and Rouv{\´e}, Gerhard}, title = {Combined Digital Image and Finite Element Analysis of Mixing in Compound Open Channel Flow / Arnold, U.; J. H{\"o}ttges; G. Rouv{\´e}}, series = {Refined flow modelling and turbulence measurements : proceedings of the Third International Symposium Tokyo, Japan 26 - 28 July, 1988 / ed. by Y. Iwasa. Scientific Organizing Committee of the Third International Symposium on Refined Flow Modelling and Tur}, journal = {Refined flow modelling and turbulence measurements : proceedings of the Third International Symposium Tokyo, Japan 26 - 28 July, 1988 / ed. by Y. Iwasa. Scientific Organizing Committee of the Third International Symposium on Refined Flow Modelling and Tur}, publisher = {Universal Acad. Press}, address = {Tokyo}, isbn = {4-946443-03-7}, pages = {569 -- 576}, year = {1989}, language = {en} } @article{Hoettges1990, author = {H{\"o}ttges, J{\"o}rg}, title = {Turbulence and Mixing Mechanics in Compound Open Channel Flow / Arnold, Uwe; H{\"o}ttges, J{\"o}rg; Rouv{\´e}, Gerhard}, series = {On cutoff ratios of curved channels : paper presented at the 23rd Congress of the IAHR, Ottawa, Canada, August 21 - 25, 1989 / G. J. Klaassen; B. H. J.van Zanten}, journal = {On cutoff ratios of curved channels : paper presented at the 23rd Congress of the IAHR, Ottawa, Canada, August 21 - 25, 1989 / G. J. Klaassen; B. H. J.van Zanten}, publisher = {Delft Hydraulics}, address = {Delft}, year = {1990}, language = {en} } @article{Hoettges1992, author = {H{\"o}ttges, J{\"o}rg}, title = {A Full Finite Element Solution for the Unsteady Advection-Diffusion Equation}, series = {Computational methods in water resources : [proceedings of the Ninth International Conference on Computational Methods in Water Resources held at the University of Colorado at Denver, U.S.A., in June 1992] / ed.: T. F. Russell}, journal = {Computational methods in water resources : [proceedings of the Ninth International Conference on Computational Methods in Water Resources held at the University of Colorado at Denver, U.S.A., in June 1992] / ed.: T. F. Russell}, publisher = {Computational Mechanics Publications [u.a.]}, address = {Southampton [u.a.]}, isbn = {185312169X}, year = {1992}, language = {en} } @article{Hoettges2017, author = {H{\"o}ttges, J{\"o}rg}, title = {QKan - Management of drainage system data with QGIS}, series = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, volume = {17}, journal = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, number = {Article 13}, pages = {95 -- 100}, year = {2017}, language = {en} } @article{HagenkampBlankeDoering2021, author = {Hagenkamp, Markus and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Thermoelectric building temperature control: a potential assessment}, series = {International Journal of Energy and Environmental Engineering}, volume = {13}, journal = {International Journal of Energy and Environmental Engineering}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s40095-021-00424-x}, pages = {241 -- 254}, year = {2021}, abstract = {This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants.}, language = {en} } @article{GosslaSato1998, author = {Gossla, Ulrich and Sato, R.}, title = {Present production circumstances of aggregate in Germany / Sato, R.; Gossla, U.}, series = {Cement \& Concrete (1998)}, journal = {Cement \& Concrete (1998)}, pages = {146 -- 153}, year = {1998}, language = {en} } @article{FellinKingKirschetal.2010, author = {Fellin, Wolfgang and King, Julian and Kirsch, Ansgar and Oberguggenberger, Michael}, title = {Uncertainty modelling and sensitivity analysis of tunnel face stability}, series = {Structural safety}, volume = {32}, journal = {Structural safety}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-4730}, doi = {10.1016/j.strusafe.2010.06.001}, pages = {402 -- 410}, year = {2010}, abstract = {This paper proposes an approach to the choice and evaluation of engineering models with the aid of a typical application in geotechnics. An important issue in the construction of shallow tunnels, especially in weak ground conditions, is the tunnel face stability. Various theoretical and numerical models for predicting the necessary support pressure have been put forth in the literature. In this paper, we combine laboratory experiments performed at the University of Innsbruck with current methods of uncertainty and sensitivity analysis for assessing adequacy, predictive power and robustness of the models. The major issues are the handling of the twofold uncertainty of test results and of model predictions as well as the decision about what are the influential input parameters.}, language = {en} }