@article{EngelmannShalabyShashaetal.2021, author = {Engelmann, Ulrich M. and Shalaby, Ahmed and Shasha, Carolyn and Krishnan, Kannan M. and Krause, Hans-Joachim}, title = {Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, isbn = {2079-4991}, doi = {10.3390/nano11051257}, pages = {1 -- 16}, year = {2021}, abstract = {Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90\% of the frequency mixing magnetic response signal is generated by the largest 10\% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.}, language = {en} } @inproceedings{Kurz2008, author = {Kurz, Melanie}, title = {On the benefit of moving images for the evaluation of form in virtual space : reflections in model theory}, series = {Design and semantics of form and movement : DeSForM 2008 ; [Hochschule f{\"u}r Gestaltung Offenbach am Main, 6.-7.11.2008]}, booktitle = {Design and semantics of form and movement : DeSForM 2008 ; [Hochschule f{\"u}r Gestaltung Offenbach am Main, 6.-7.11.2008]}, editor = {Feijs, Loe}, publisher = {Philips}, address = {Eindhoven}, isbn = {978-90-809801-2-9}, pages = {31 -- 34}, year = {2008}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @inproceedings{Kurz2006, author = {Kurz, Melanie}, title = {Recognition of shape in virtual visualizations}, series = {Proceedings : November 15 - 17, 2006, Technische Universit{\"a}t Darmstadt, Darmstadt, Germany ; PACE, Partners for the advancement of collaborative engineering education}, booktitle = {Proceedings : November 15 - 17, 2006, Technische Universit{\"a}t Darmstadt, Darmstadt, Germany ; PACE, Partners for the advancement of collaborative engineering education}, publisher = {Techn. Univ.}, address = {Darmstadt}, isbn = {978-3-00-020161-5}, pages = {203 -- 209}, year = {2006}, language = {en} } @article{ZhantlessovaSavitskayaKistaubayevaetal.2024, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Correction: Zhantlessova et al. advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy. Polymers 2022, 14, 3224}, series = {Polymers}, volume = {16}, journal = {Polymers}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym16131802}, pages = {2 Seiten}, year = {2024}, language = {en} }