@article{HeelDiktaBraekers2021, author = {Heel, Mareike van and Dikta, Gerhard and Braekers, Roel}, title = {Bootstrap based goodness‑of‑fit tests for binary multivariate regression models}, series = {Journal of the Korean Statistical Society}, volume = {51}, journal = {Journal of the Korean Statistical Society}, publisher = {Springer Nature}, address = {Singapur}, issn = {2005-2863 (Online)}, doi = {10.1007/s42952-021-00142-4}, pages = {28 Seiten}, year = {2021}, abstract = {We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613-641, 1997). In contrast to Stute and Zhu's approach (2002) Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set.}, language = {en} } @article{OliveiraMolinnusBegingetal.2021, author = {Oliveira, Danilo A. and Molinnus, Denise and Beging, Stefan and Siqueira Jr, Jos{\´e} R. and Sch{\"o}ning, Michael Josef}, title = {Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000747}, pages = {1 -- 9}, year = {2021}, abstract = {A new functionalization method to modify capacitive electrolyte-insulator-semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS-nanofilm-enzyme) of around 15\% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS-enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.}, language = {en} } @article{GriegerSchwabedalWendeletal.2021, author = {Grieger, Niklas and Schwabedal, Justus T. C. and Wendel, Stefanie and Ritze, Yvonne and Bialonski, Stephan}, title = {Automated scoring of pre-REM sleep in mice with deep learning}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {Art. 12245}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-91286-0}, year = {2021}, abstract = {Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wake, REM, and Non-REM. Meanwhile, it has been recognized that the statistics of transitional stages such as pre-REM, found between Non-REM and REM, may hold additional insight into the physiology of sleep and are now under vivid investigation. We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice. When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95 in male C57BL/6J mice. When unrestricted, the network showed lower F1 scores on pre-REM (0.5) compared to the classical stages. The result is comparable to previous attempts to score transitional stages in other species such as transition sleep in rats or N1 sleep in humans. Nevertheless, we observed that the sequence of predictions including pre-REM typically transitioned from Non-REM to REM reflecting sleep dynamics observed by human scorers. Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages of sleep are under-represented in typical data sets or show large inter-scorer variability. We further provide our source code and an online platform to run predictions with our trained network.}, language = {en} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @article{HunkerGossmannRamanetal.2021, author = {Hunker, Jan L. and Gossmann, Matthias and Raman, Aravind Hariharan and Linder, Peter}, title = {Artificial neural networks in cardiac safety assessment: Classification of chemotherapeutic compound effects on hiPSC-derived cardiomyocyte contractility}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {111}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article number 107044}, publisher = {Elsevier}, address = {New York}, issn = {1056-8719}, doi = {10.1016/j.vascn.2021.107044}, year = {2021}, language = {en} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @article{Staat2021, author = {Staat, Manfred}, title = {An extension strain type Mohr-Coulomb criterion}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {12}, publisher = {Springer Nature}, address = {Cham}, issn = {1434-453X}, doi = {10.1007/s00603-021-02608-7}, pages = {6207 -- 6233}, year = {2021}, abstract = {Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{PoghossianWeldenBuniatyanetal.2021, author = {Poghossian, Arshak and Welden, Rene and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21186161}, pages = {17}, year = {2021}, abstract = {The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.}, language = {en} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @article{GoettenHavermannBraunetal.2021, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach}, series = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, journal = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2021-1535}, pages = {1 -- 12}, year = {2021}, language = {en} }