@article{SponagelBaroudFalketal.2004, author = {Sponagel, Stefan and Baroud, Gamal and Falk, R. and Crookshank, M.}, title = {Corrigendum to "Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration". Baroud, G.; Falk, R.; Crookshank, M.; Sponagel, S.; Steffen, T.}, series = {Journal of Biomechanics. 37 (2004), H. 2}, journal = {Journal of Biomechanics. 37 (2004), H. 2}, isbn = {0021-9290}, pages = {1802}, year = {2004}, language = {en} } @article{SponagelBaroudSteffenetal.2002, author = {Sponagel, Stefan and Baroud, Gamal and Steffen, T. and Wu, J.}, title = {Parameter identification for cement infiltration of osteoporotic bone}, series = {Poromechanics II : Proceedings of the Second Biot Conference on Poromechanics Grenoble, France 26 - 28 August 2002 / ed. by J.-L. Auriault ...}, journal = {Poromechanics II : Proceedings of the Second Biot Conference on Poromechanics Grenoble, France 26 - 28 August 2002 / ed. by J.-L. Auriault ...}, publisher = {Balkema}, address = {Lisse [u.a.]}, isbn = {90-5809-394-8}, pages = {55 -- 58}, year = {2002}, language = {en} } @article{ScholzLeyDachwaldetal.2010, author = {Scholz, A. and Ley, Wilfried and Dachwald, Bernd and Miau, J. J. and Juang, J. C.}, title = {Flight results of the COMPASS-1 picosatellite mission}, series = {Acta Astronautica}, volume = {76}, journal = {Acta Astronautica}, number = {9-10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2010.06.040}, pages = {1289 -- 1298}, year = {2010}, abstract = {The mission of the COMPASS-1 picosatellite is to take pictures of the earth, to validate a space-borne GPS receiver developed by the German Aerospace Center, and to verify the proper operation of the magnetic attitude control system in orbit. The spacecraft was launched on April 28, 2008 from the Indian space port Sriharikota, as part of the PSLV-C9 world record launch that simultaneously brought ten satellites into orbit. The mission operations were carried out from the ground stations in Aachen and Tainan. Arising difficulties in the communication link were overcome with the support of individuals from the amateur radio community. After several months of mission operation, abundant housekeeping and mission data has been commanded, received and analyzed and is presented in this paper.}, language = {en} } @article{OrtnerHauserSchmadereretal.2019, author = {Ortner, Marion and Hauser, Christine and Schmaderer, Christoph and Muggenthaler, Claudia and Hapfelmeier, Alexander and Sorg, Christian and Diehl-Schmid, Janine and Kurz, Alexander and F{\"o}rstl, Hans and Ikenberg, Benno and Kotliar, Konstantin and Holger, Poppert and Grimmer, Timo}, title = {Decreased vascular pulsatility in Alzheimer's disease dementia measured by transcranial color-coded duplex sonography}, series = {Neuropsychiatric disease and treatment}, journal = {Neuropsychiatric disease and treatment}, number = {15}, publisher = {Dove Medical Press}, address = {Albany, Auckland}, issn = {1178-2021}, doi = {10.2147/NDT.S225754}, pages = {3487 -- 3499}, year = {2019}, abstract = {Purpose: Impaired paravascular drainage of β-Amyloid (Aβ) has been proposed as a contributing cause for sporadic Alzheimer's disease (AD), as decreased cerebral blood vessel pulsatility and subsequently reduced propulsion in this pathway could lead to the accumulation and deposition of Aβ in the brain. Therefore, we hypothesized that there is an increased impairment in pulsatility across AD spectrum. Patients and Methods: Using transcranial color-coded duplex sonography (TCCS) the resistance and pulsatility index (RI; PI) of the middle cerebral artery (MCA) in healthy controls (HC, n=14) and patients with AD dementia (ADD, n=12) were measured. In a second step, we extended the sample by adding patients with mild cognitive impairment (MCI) stratified by the presence (MCI-AD, n=8) or absence of biomarkers (MCI-nonAD, n=8) indicative for underlying AD pathology, and compared RI and PI across the groups. To control for atherosclerosis as a confounder, we measured the arteriolar-venular-ratio of retinal vessels. Results: Left and right RI (p=0.020; p=0.027) and left PI (p=0.034) differed between HC and ADD controlled for atherosclerosis with AUCs of 0.776, 0.763, and 0.718, respectively. The RI and PI of MCI-AD tended towards ADD, of MCI-nonAD towards HC, respectively. RIs and PIs were associated with disease severity (p=0.010, p=0.023). Conclusion: Our results strengthen the hypothesis that impaired pulsatility could cause impaired amyloid clearance from the brain and thereby might contribute to the development of AD. However, further studies considering other factors possibly influencing amyloid clearance as well as larger sample sizes are needed.}, language = {en} } @article{BandlitzNakhoulKotliar2022, author = {Bandlitz, Stefan and Nakhoul, Makram and Kotliar, Konstantin}, title = {Daily variations of corneal white-to-white diameter measured with different methods}, series = {Clinical and experimental optometry}, journal = {Clinical and experimental optometry}, number = {14}, publisher = {Taylor \& Francis}, address = {London}, issn = {0816-4622}, doi = {10.2147/OPTO.S360651}, pages = {173 -- 181}, year = {2022}, abstract = {Purpose: A precise determination of the corneal diameter is essential for the diagnosis of various ocular diseases, cataract and refractive surgery as well as for the selection and fitting of contact lenses. The aim of this study was to investigate the agreement between two automatic and one manual method for corneal diameter determination and to evaluate possible diurnal variations in corneal diameter. Patients and Methods: Horizontal white-to-white corneal diameter of 20 volunteers was measured at three different fixed times of a day with three methods: Scheimpflug method (Pentacam HR, Oculus), placido based topography (Keratograph 5M, Oculus) and manual method using an image analysis software at a slitlamp (BQ900, Haag-Streit). Results: The two-factorial analysis of variance could not show a significant effect of the different instruments (p = 0.117), the different time points (p = 0.506) and the interaction between instrument and time point (p = 0.182). Very good repeatability (intraclass correlation coefficient ICC, quartile coefficient of dispersion QCD) was found for all three devices. However, manual slitlamp measurements showed a higher QCD than the automatic measurements with the Keratograph 5M and the Pentacam HR at all measurement times. Conclusion: The manual and automated methods used in the study to determine corneal diameter showed good agreement and repeatability. No significant diurnal variations of corneal diameter were observed during the period of time studied.}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert and Digel, Ilya and Artmann, Gerhard}, title = {Development and testing of a subsurface probe for detection of life in deep ice : [abstract]}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, subject = {Eisschicht}, language = {en} } @article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @article{MurganBeyerKotliaretal.2013, author = {Murgan, Ilina and Beyer, Sonja and Kotliar, Konstantin and Weber, Lutz and Bechtold-Dalla Pozza, Susanne and Dalla Pozza, Robert and Wegner, Aharon and Sitnikova, Diana and Stock, Konrad and Heemann, Uwe and Schmaderer, Christoph and Baumann, Marcus}, title = {Arterial and Retinal Vascular Changes in Hypertensive and Prehypertensive Adolescents}, series = {American Journal of Hypertension}, volume = {26}, journal = {American Journal of Hypertension}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1941-7225}, pages = {400 -- 408}, year = {2013}, language = {de} } @techreport{BlandfordDachwaldDigeletal.2015, author = {Blandford, Daniel and Dachwald, Bernd and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecke, Hannah and Kowalski, Julia and Lindner, Peter and Plescher, Engelbert and Sch{\"o}ngarth, Sarah}, title = {Enceladus Explorer : Schlussbericht — Version: 1.0}, publisher = {FH Aachen}, address = {Aachen}, doi = {10.2314/GBV:86319950X}, year = {2015}, language = {de} } @article{KotliarHanssenEberhardtetal.2013, author = {Kotliar, Konstantin and Hanssen, Henner and Eberhardt, Karla and Vilser, Walthard and Schmaderer, Christoph and Halle, Martin and Heemann, Uwe and Baumann, Marcus}, title = {Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects}, series = {Microcirculation}, journal = {Microcirculation}, publisher = {Wiley}, address = {Malden}, issn = {1549-8719}, year = {2013}, language = {en} }