@inproceedings{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Pectopexy to repair vaginal vault prolapse: a finite element approach}, series = {Proceedings CMBBE 2018}, booktitle = {Proceedings CMBBE 2018}, editor = {Fernandes, P.R. and Tavares, J. M.}, year = {2018}, abstract = {The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient's anatomy and the surgeon's preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.}, language = {en} } @inproceedings{JungStaat2016, author = {Jung, Alexander and Staat, Manfred}, title = {Computing olympic gold: Ski jumping as an example}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-06-6}, doi = {10.17185/duepublico/40821}, pages = {54 -- 55}, year = {2016}, language = {en} } @inproceedings{SpurmannOhndorfDachwaldetal.2009, author = {Spurmann, J{\"o}rn and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and L{\"o}b, Horst and Schartner, Karl-Heinz}, title = {Interplanetary trajectory optimization for a sep mission to Saturn}, series = {60th International Astronautical Congress 2009}, booktitle = {60th International Astronautical Congress 2009}, isbn = {9781615679089}, pages = {5234 -- 5248}, year = {2009}, abstract = {The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general.}, language = {en} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @article{StaatVu2007, author = {Staat, Manfred and Vu, Duc-Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels. Part I: Axial defects}, series = {Engineering Fracture Mechanics. 74 (2007), H. 3}, journal = {Engineering Fracture Mechanics. 74 (2007), H. 3}, isbn = {0013-7944}, pages = {431 -- 450}, year = {2007}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{VuStaat2007, author = {Vu, Duc Khoi and Staat, Manfred}, title = {Shakedown analysis of structures made of materials with temperature-dependent yield stress}, series = {International Journal of Solids and Structures. 44 (2007), H. 13}, journal = {International Journal of Solids and Structures. 44 (2007), H. 13}, isbn = {0020-7683}, pages = {4524 -- 4540}, year = {2007}, language = {en} } @incollection{KnottSofroniaGerressenetal.2014, author = {Knott, Thomas C. and Sofronia, Raluca E. and Gerressen, Marcus and Law, Yuen and Davidescu, Arjana and Savii, George G. and Gatzweiler, Karl-Heinz and Staat, Manfred and Kuhlen, Torsten W.}, title = {Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy}, series = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, booktitle = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12057-7 (Online)}, doi = {10.1007/978-3-319-12057-7_1}, pages = {1 -- 10}, year = {2014}, abstract = {Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.}, language = {en} } @article{DachwaldCarnelliVasile2007, author = {Dachwald, Bernd and Carnelli, I. and Vasile, M.}, title = {Optimizing low-thrust gravity assist interplanetary trajectories using evolutionary neurocontrollers / I. Carnelli ; B. Dachwald ; M. Vasile}, series = {IEEE Congress on Evolutionary Computation, 2007 : CEC 2007 ; 25 - 28 September 2007, Singapore}, journal = {IEEE Congress on Evolutionary Computation, 2007 : CEC 2007 ; 25 - 28 September 2007, Singapore}, publisher = {IEEE Service Center}, address = {Piscataway, NJ}, isbn = {978-1-424-41339-3}, pages = {965 -- 972}, year = {2007}, language = {en} } @article{DoorschodtSchreinemachersBehbahanietal.2011, author = {Doorschodt, B. M. and Schreinemachers, M. C. J. M. and Behbahani, Mehdi and Florquin, S. and Weis, J. and Staat, Manfred and Tolba, R. H.}, title = {Hypothermic machine perfusion of kidney grafts: which pressure is preferred}, series = {Annals of Biomedical Engineering. 39 (2011), H. 3}, journal = {Annals of Biomedical Engineering. 39 (2011), H. 3}, publisher = {Springer}, address = {Berlin}, isbn = {1573-9686}, pages = {1051 -- 1059}, year = {2011}, language = {en} } @article{DigelZerlinTemizArtmannetal.2007, author = {Digel, Ilya and Zerlin, Kay and Temiz Artmann, Ayseg{\"u}l and Engels, S.}, title = {Protein dynamics in thermosensation}, series = {Regenerative medicine. 2 (2007), H. 5}, journal = {Regenerative medicine. 2 (2007), H. 5}, isbn = {1746-0751}, pages = {533 -- 533}, year = {2007}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions}, series = {Computational and Mathematical Methods in Medicine}, volume = {2018}, journal = {Computational and Mathematical Methods in Medicine}, number = {Article ID 9518076}, publisher = {Hindawi}, address = {New York, NY}, issn = {1748-6718}, doi = {10.1155/2018/9518076}, pages = {1 -- 16}, year = {2018}, abstract = {After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5\%), adipose tissue (85\%), and smooth muscle (5\%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females.}, language = {en} } @article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{SavitskayaKistaubayevaIgnatovaetal.2019, author = {Savitskaya, I.S. and Kistaubayeva, A.S. and Ignatova, L.V. and Digel, Ilya}, title = {Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells}, series = {Heliyon}, volume = {5}, journal = {Heliyon}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8440}, doi = {10.1016/j.heliyon.2019.e02592}, pages = {Artikelnummer e02592}, year = {2019}, language = {en} } @inproceedings{StaatTranPham2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Pham, Phu Tinh}, title = {Limit and shakedown reliability analysis by nonlinear programming}, year = {2008}, abstract = {7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs.}, subject = {Finite-Elemente-Methode}, language = {en} } @incollection{MacdonaldMcGrathAppourchauxetal.2014, author = {Macdonald, Malcolm and McGrath, C. and Appourchaux, T. and Dachwald, Bernd and Finsterle, W. and Gizon, L. and Liewer, P. C. and McInnes, Colin R. and Mengali, G. and Seboldt, Wolfgang and Sekii, T. and Solanki, S. K. and Velli, M. and Wimmer-Schweingruber, R. F. and Spietz, Peter and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a solar polar mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, editor = {Macdonald, Malcolm}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-34906-5}, doi = {10.1007/978-3-642-34907-2_17}, pages = {243 -- 257}, year = {2014}, abstract = {A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100-125 m to deliver a 'sufficient value' minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass.}, language = {en} } @article{DachwaldMcDonaldMcInnesetal.2007, author = {Dachwald, Bernd and McDonald, Malcolm and McInnes, Colin R. and Mengali, Giovanni}, title = {Impact of Optical Degradation on Solar Sail Mission Performance}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {740 -- 749}, year = {2007}, language = {en} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @inproceedings{OhndorfDachwaldSeboldtetal.2011, author = {Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and Schartner, Karl-Heinz}, title = {Flight times to the heliopause using a combination of solar and radioisotope electric propulsion}, series = {32nd International Electric Propulsion Conference}, booktitle = {32nd International Electric Propulsion Conference}, pages = {1 -- 12}, year = {2011}, abstract = {We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere's "nose".}, language = {en} }