@misc{SiekerTippkoetterUlber2010, author = {Sieker, T. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Simultane Vorbehandlung, Hydrolyse und Fermentation bei der Nutzung von gr{\"u}ner Biomasse zur Produktion von Bioethanol}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201050319}, pages = {1601}, year = {2010}, abstract = {Gr{\"a}ser sind in der Lage, einen großen Teil der f{\"u}r eine biobasierte Wirtschaft ben{\"o}tigten Biomasse zur Verf{\"u}gung zu stellen. Wie bei anderen lignocellulosehaltigen nachwachsenden Rohstoffen erfordert die Verwertung der im Gras enthaltenen Polysaccharide einen mehrstufigen Prozess aus Vorbehandlung, Hydrolyse und Fermentation. In Gr{\"a}sern ist die Hemicellulose mitP henolcarbons{\"a}uren wie Ferula- und p-Coumars{\"a}ure verestert, die die enzymatische Hydrolyse der Cellulose und Hemicellulose ebenso effektiv behindern wie Lignin. Anders als bei holzigen Rohstoffen erm{\"o}glicht dieser Aufbau aber eine enzymatische Vorbehandlung, mit der die Phenolcarbons{\"a}uren abgespalten werden k{\"o}nnen. Da die bei der Vorbehandlung eingesetzten Enzyme in ihrer nat{\"u}rlichen Funktion synergistisch mit cellulytischen Enzymen zusammenarbeiten, besitzen sie {\"a}hnliche Optima wie die f{\"u}r die Hydrolyse der Polysaccharide eingesetzten Cellulasen und Hemicellulasen. Diese Eigenschaft erm{\"o}glicht die Integration von Vorbehandlung und Hydrolyse in einem einzigen Verfahrensschritt. Durch die Einf{\"u}hrung der enzymatischen Vorbehandlung konnte das in der Literatur bekannte SSF-Verfahren f{\"u}r die Herstellung von Ethanol aus Gr{\"a}sern um die Vorbehandlungsstufe erweitert werden. Das so realisierte simultaneous pretreatment, saccharification and fermentation (SPSF)-Verfahren stellt eine vollst{\"a}ndige Integration der drei f{\"u}r die Nutzung von Lignocellulose n{\"o}tigen Verfahrensschritte in der gr{\"u}nen Bioraffinerie dar.}, language = {de} } @misc{SiekerTippkoetterUlberetal.2009, author = {Sieker, T. and Tippk{\"o}tter, Nils and Ulber, Roland and Bart, H.-J. and Heinzle, E.}, title = {Nutzung von Silage zur fermentativen Produktion von Grund-und Feinchemikalien}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.200950271}, pages = {1207}, year = {2009}, abstract = {Grasschnitt hat in Deutschland ein betr{\"a}chtliches Potenzial als nachwachsender Rohstoff. Da frischer Grasschnitt nur in den Sommermonaten zur Verf{\"u}gung steht und Gras bei der Lagerung verrottet, wird er unter anderem durch Silierung konserviert. W{\"a}hrend der Silierung wird ein Teil der wasserl{\"o}slichen Kohlenhydrate unter anaeroben Bedingungen zu Milchs{\"a}ure fermentiert. Die Kombination aus Luftabschluss und Ans{\"a}uerung bewirkt die Konservierung der Silage. Silage als weit verbreitetes landwirtschaftliches Erzeugnis ist somit ein potentieller, in großen Mengen verf{\"u}gbarer Lieferant f{\"u}r eine Vielzahl von Substraten f{\"u}r mikrobielle Fermentationen. Diese k{\"o}nnen entweder durch die Hydrolyse der in den Pflanzen enthaltenen Cellulosen und Hemicellulosen oder durch die Verwendung eines Silagepresssaftes nutzbar gemacht werden. Die zu entwickelnden Prozesse sollen die verbleibenden Kohlenhydrate, inklusive der Cellulose und Hemicellulose, sowie die Milchs{\"a}ure nutzen. Die in der Silage enthaltenen Zucker sollen zu Ethanol, Itakons{\"a}ure und Bernsteins{\"a}ure und die Milchs{\"a}ure zu 1,2-Propandiol umgesetzt werden. Anfallende Reststoffe wie Hydrolyser{\"u}ckst{\"a}nde, Presskuchen und Fermentationsr{\"u}ckst{\"a}nde sollen bei allen zu etablierenden Prozessen entweder als Viehfutter verwendet oder der Biogasproduktion zugef{\"u}hrt werden k{\"o}nnen, wodurch eine vollst{\"a}ndige stoffliche und energetische Nutzung der Silage erreicht wird.}, language = {de} } @misc{CapitainHeringTippkoetter2016, author = {Capitain, C. and Hering, T. and Tippk{\"o}tter, Nils}, title = {Enzymatische Polymerisation von Ligninmodellkomponenten und Organosolv-Lignin mit aromatischen Aminos{\"a}uren}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650374}, pages = {1236}, year = {2016}, abstract = {Die stoffliche Nutzung von Lignin aus Bioraffinerien ist ein wichtiger Bestandteil f{\"u}r den Wertsch{\"o}pfungsprozess von nachwachsenden, pflanzlichen Rohstoffen. Lignin z{\"a}hlt zu den wenigen erneuerbaren Quellen f{\"u}r phenolische Bestandteile, wird aber derzeit meist nur thermisch verwertet. Ziel dieses Forschungsvorhabens ist die Funktionalisierung von Lignin zur Verbesserung der Adh{\"a}sionseigenschaften. Als funktionelle Gruppe wird die aromatische Aminos{\"a}ure L-DOPA verwendet, die charakteristisch f{\"u}r die Adh{\"a}sionskraft von Muscheln ist. Lignin ist ein geeignetes St{\"u}tzger{\"u}st, da es ein Polymer ist, das durch enzymkatalysierte Polymerisation gebildet wird. Essenziell f{\"u}r die Entwicklung ist ein besseres Verst{\"a}ndnis {\"u}ber die Bildung von Lignin-Polymeren und deren verschiedene Eigenschaften. Um die Einflussfaktoren auf Kettenl{\"a}nge und Polymerisationseffizienz zu untersuchen, werden zurzeit sowohl Ligninmodellkomponenten (LMK) als auch gel{\"o}stes Organosolv-Lignin verwendet. Laufende Untersuchungen werden zeigen, ob sich die enzymatische Polymerisationsreaktion auf ein gel{\"o}stes Ligninpolymer aus einem Organosolv-Aufschluss {\"u}bertragen l{\"a}sst.}, language = {de} } @misc{TippkoetterWulfhorstMogueetal.2014, author = {Tippk{\"o}tter, Nils and Wulfhorst, H. and Mogue, N. and M{\"o}hring, S. and Roth, J. and Ulber, Roland}, title = {Spektrometrische Messung und Modellierung der enzymatischen Hydrolyse von Biomasse nach Organosolv- und Liquid Hot Water-Aufschl{\"u}ssen (LHW)}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450269}, pages = {1584}, year = {2014}, abstract = {In diesem Beitrag wird die NIR- und MIR-Spektrometrie in Kombination mit multivariaten Kalibrationsmodellen zur Analyse von Monosacchariden und Cellulose aus Biomasse etabliert. Spektrengemischter Standardl{\"o}sungen mit definierten Glucose- und Xylosekonzentrationen in Wasser werden im NIR-(Lambda 750, Perkin Elmer, USA) und MIR-Bereich (Spektrum 100, PerkinElmer) in Gegenwart von entweder Carboxymethylcellulose oder Grasfasern aufgenommen. Darauf basierend werden Kalibrationsmodelle (Unscrambler®, CAMO-Software AS, Norwegen) entwickelt und zur Vorhersage der Zuckerkonzentration in den Hydrolyseproben und der Celluloseanteile angewendet. Dar{\"u}ber hinaus wird die Partikelgr{\"o}ße der Rohstoffe bestimmt. Die Messergebnisse bilden die experimentelle Basis f{\"u}r die numerische Modellierung der Reaktionskinetik der enzymatischen Hydrolyse von Lignocellulose. Das Modell kombiniert die Bilanzierung der Partikelgr{\"o}ßenverteilungen mit der Multienzymkinetik. Dabei werden neben der Partikelgr{\"o}ßenverteilung und der Substratkonzentration die Zusammensetzung der Rohstoffe nach Vorbehandlung sowie die Produktinhibierung und mehrere enzymatische Aktivit{\"a}ten ber{\"u}cksichtigt. Das Modell erm{\"o}glicht es, die Partikelgr{\"o}ßenverteilungen und die Konzentrationen der Substrate und Produkte w{\"a}hrend der Hydrolyse vorherzusagen und die kinetischen Parameter im Batch- sowie im Fed-Batch-Reaktor zu bestimmen.}, language = {de} } @misc{ThielTippkoetterSucketal.2010, author = {Thiel, A. and Tippk{\"o}tter, Nils and Suck, K. and Sohling, U. and Ruf, F. and Ulber, Roland}, title = {Simulation und Experiment bei der Aufarbeitung von Polyphenolen durch neue Silicatmaterialien}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201050104}, pages = {1589}, year = {2010}, abstract = {Nachwachsende Rohstoffe stellen eine reichhaltige Quelle f{\"u}r die Gewinnung von wirtschaftlich interessanten Biomolek{\"u}len dar. Die Gruppe der Polyphenole ist dabei f{\"u}r mehrere Industriezweige bedeutend. Ihre antioxidativen Eigenschaften sind z. B. f{\"u}r die Pharmaindustrie interessant. Im derzeit bearbeiteten Projekt sollen Polyphenole aus Pflanzenbestandteilen isoliert und aufgereinigt werden, um sie dann als Komponenten f{\"u}r eine Vernetzung von Polymeren auf der Basis von Fetts{\"a}uren einzusetzen. Bisher sind im Wesentlichen Prozesse zur Entfernung von Polyphenolen aus Getr{\"a}nken wie Bier und Wein bekannt. Eine Wiedergewinnung der Polyphenole war in diesen Anwendungen bisher nicht relevant. Die Gewinnung bzw. Abtrennung der Polyphenole erfolgt u. a. durch kommerziell erh{\"a}ltliche Adsorbentien wie PVPP, Adsorberharze XAD16 (Rh{\"o}m \& Haas) oder SP70 (Sepabeads), deren Partikelgr{\"o}ßen im Bereichvon 0,1 ± 0,8 mm und spezifischen Oberfl{\"a}chen von 700 ± 900 m 2 /g liegen. Als Alternative zu diesen Adsorbern sollen neue Materialien auf Basis von anorganischen Trennmedien, wie z. B. nat{\"u}rlichen Tonmineralien, f{\"u}r die Polyphenolabtrennung verwendet werden. Derzeit wird durch Abgleich von Experiment und Simulation ein Materialscreening durchgef{\"u}hrt. Durch den Einsatz molekulardynamischer Bindungssimulationen wird die Adsorbersuche beschleunigt und Vorhersagen zu Modifikationen bei der Herstellung der neuen Adsorbentien erm{\"o}glicht.}, language = {de} } @misc{EngelTippkoetter2016, author = {Engel, M. and Tippk{\"o}tter, Nils}, title = {Einfluss eines Phenazin-Mediators und elektrischen Potenzials auf die Aceton-Butanol-Ethanol-Fermentation}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650105}, pages = {1254}, year = {2016}, abstract = {In den letzten Jahren haben nachhaltige, biotechnologische Prozesse zunehmend an Bedeutung gewonnen. Die Aceton-Butanol-Ethanol-Fermentation (ABE-Fermentation) mit dem anaeroben Bakterium Clostridium acetobutylicum zur Gewinnung von Biobutanol k{\"o}nnte in diesem Zusammenhang eine M{\"o}glichkeit der nachhaltigen Kraftstoffproduktion darstellen. In dieser Arbeit wird der Einfluss zus{\"a}tzlich verf{\"u}gbarer Elektronen durch den Einsatz des Phenazin-Farbstoffs Neutralrot als Redoxmediator sowie das Anlegen eines elektrischen Potenzials w{\"a}hrend der ABE-Fermentation untersucht. Es wird gezeigt, dass das Neutralrot keinen Einfluss auf die Leerlaufspannung von ca. 500 mV vs. Ag/AgCl w{\"a}hrend der Fermentation hat. Der Mediator bewirkt allerdings eine fr{\"u}here Butanolbildung sowie h{\"o}here Butanolkonzentrationen. Wird zudem die Mediatorkonzentration von 125 mM auf 250 mM angehoben, wird dabei auch die maximale Butanolkonzentration um 36 \% ± 1,8 \% innerhalb von28 Stunden gesteigert.}, language = {de} } @misc{TippkoetterStaubSohlingetal.2012, author = {Tippk{\"o}tter, Nils and Staub, C. and Sohling, U. and Ruf, N. and Ulber, Roland}, title = {Adsorptive Aufreinigung von Molkeproteinen}, series = {Chemie Ingenieur Technik}, volume = {84}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201250395}, pages = {1285}, year = {2012}, abstract = {In der Molkeverarbeitung dominieren Membranfiltrationsverfahren die Prozessf{\"u}hrung. Hierbei werden {\"u}blicherweise Aufkonzentrierungen der Proteine und deren Trennung von dem Milchzucker Lactose durchgef{\"u}hrt. Der Prozess der adsorptiven Aufreinigung soll als kosteng{\"u}nstige Alternative zu den bisher gebr{\"a}uchlichen Verfahren dienen. Weiterhin er{\"o}ffnet sich durch das Verfahren die M{\"o}glichkeit, einzelne Proteinfraktionen w{\"a}hrend der Verarbeitung anzureichern. Als Proteinquellen wurden f{\"u}r die Untersuchungen Modellproteine, L{\"o}sungen aus Molkenproteinisolat, D{\"u}nnmolke und Molkekonzentrat verwendet. Die Eignung zur Proteinbindung wurden an Tonmaterialien, Silicaten und y-Aluminiumoxiden in Pulverform, in Form von Granulaten sowie Extrudaten als auch sph{\"a}rischen Partikeln {\"u}berpr{\"u}ft. Adsorbentien aus Bentonit/Silica und c-Aluminiumoxid k{\"o}nnen sowohl a-Lactalbumin (aLA) als auch b-Lactoglobulin (bLG) binden, wohingegen Materialien aus Siliciumoxid lediglich ein starkes Adsorptionsverhalten gegen{\"u}ber bLG zeigen. Mischmaterialien aus Siliciumoxid und a-Aluminiumoxid zeigen dasselbe Verhalten wie Materialien aus Siliciumoxid, weisen jedoch eine geringere Kapazit{\"a}t auf. Die Materialen wurden hinsichtlich ihres Einsatzes in chromatographischen Verfahren und Batch-Prozessen untersucht und ein Prozessentwurf f{\"u}r einen zweistufigen Batch-Prozess im R{\"u}hrkessel erarbeitet.}, language = {de} } @misc{TippkoetterUlber2012, author = {Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Rezension zu: Encyclopedia of Industrial Biotechnology, Vol. 1-7. By MC Flickinger.}, series = {Chemie Ingenieur Technik}, volume = {6}, journal = {Chemie Ingenieur Technik}, number = {84}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201290052}, pages = {936}, year = {2012}, language = {en} } @misc{SiekerDuwePothetal.2012, author = {Sieker, T. and Duwe, A. and Poth, S. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Itacons{\"a}ureherstellung aus Buchenholz-Hydrolysaten}, series = {Chemie Ingenieur Technik}, volume = {84}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201250414}, pages = {1300}, year = {2012}, abstract = {Aus h{\"o}lzernen Cellulosen und Hemicellulosen k{\"o}nnen durch enzymatische Hydrolyse fermentierbare Zucker f{\"u}r die Herstellung von Chemikalien und Treibstoffen gewonnen werden. Die bisherige Forschung fokussiert sich oft auf die Nutzung dieser Zucker zur Gewinnung von Ethanol. Daneben muss aber auch die stoffliche Nutzung zur Gewinnung von Grundchemikalien ber{\"u}cksichtigt werden. Eine solche Grundchemikalie ist Itakons{\"a}ure. Obwohl die biotechnologische Itacons{\"a}ureproduktion bereits eingehend untersucht und etabliert ist, gestaltet sie sich im Rahmen von Bioraffinerien der zweiten Generation als schwierig, da der {\"u}berwiegend verwendete Produktionsorganismus gegen eine weite Bandbreite von Inhibitoren sensibel ist. Die Herstellung von Itacons{\"a}ure aus Buchenholzhydrolysaten wird im Rahmen der deutschen Lignocellulose-Bioraffinerie entwickelt. Die unbehandelten Hydrolysate erm{\"o}glichen weder das Wachstum von Aspergillus terreus noch die Bildung von Itacons{\"a}ure. Daher werden M{\"o}glichkeiten zur Konditionierung des Hydrolysates mit dem Ziel einer Itacons{\"a}ureproduktion mit hohen Ausbeuten und Konzentrationen vorgestellt.}, language = {de} } @misc{SchumannRoginSchneideretal.2012, author = {Schumann, C. and Rogin, S. and Schneider, H. and Oster, J. and Tippk{\"o}tter, Nils and Kampeis, P.}, title = {Steuerung von HGMS-Prozessen mittels Durchflusszytometrie}, series = {Chemie Ingenieur Technik}, volume = {84}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201250125}, pages = {1370}, year = {2012}, abstract = {Die Hochgradientenmagnetseparation (HGMS) ist eine Methode zur Aufreinigung von biopharmazeutischen Produkten. Mit dieser Methode l{\"a}sst sich in nur einem Schritt eine Fest/Fest/Fl{\"u}ssig-Trennung erzielen, was zu einer erheblichen Zeit- und Kostenersparnis im Downstreaming f{\"u}hrt. Dennoch steht ihr industrieller Einsatz noch aus, was u. a. am Mangel an Analysenmethoden liegt, um die HGMS quantifizierbar zu machen. Gerade in der Pharmaproduktion werden Prozesse gebraucht, die gem{\"a}ß den einschl{\"a}gigen Vorschriften (cGMP) validiert und deren verfahrenstechnische Anlagenteile qualifiziert werden k{\"o}nnen. Die Schwierigkeit ist die Messung der magnetischen Mikrosorbentien in der Suspension, in der auch Zellen oder Zelltr{\"u}mmer vorliegen. Im Rahmen eines Forschungsprojektes im „Zentralen Innovationsprogramm Mittelstand" des BMWi wurden verschiedene Analysenmethoden untersucht. Die Durchflusszytometrie erm{\"o}glicht eine Charakterisierung von Partikeln und eine simultane quantitative Messung. Durch die multiparametrige Messung kann zwischen Zellen, Zelltr{\"u}mmern und Magnetpartikeln unterschieden werden. Die At-line-Einbindung des Durchflusszytometers ist durch den Einsatz einer externen Pumpe m{\"o}glich. {\"U}ber eine automatisierte Messwertanalyse kann der HGMS-Prozess mittels der Durchflusszytometrie gesteuert werden.}, language = {de} } @misc{HeringPasteurWollnyetal.2014, author = {Hering, T. and Pasteur, A. and Wollny, S. and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Magnetische Separation von Gold-Nanopartikeln zur Glucons{\"a}ure-Produktion durch Hochgradient-Magnetseparation im Labormaßstab}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450265}, pages = {1501}, year = {2014}, abstract = {Bei der Verarbeitung nachwachsender Rohstoffe entsteht aus Cellulose oder St{\"a}rke u. a. das wichtige Produkt Glucose. Diese niedermolekulare Kohlenhydratquelle wird {\"u}blicherweise als Substrat f{\"u}r biotechnologische und chemische Synthesen verwendet. Ein wirtschaftlich interessantes Oxidationsprodukt der Glucose ist Glucons{\"a}ure, die beispielsweise als Lebensmittelzusatzstoff (E 574), in der Medizin und Metallindustrie Verwendung findet. Die Umsetzung des Monosaccharids zu Glucons{\"a}ure erfolgt entweder durch mikrobielle Fermentation oder der Oxidation an heterogenen Katalysatoren. Die Zielsetzung der Studie ist die Untersuchung der Glucoseoxidation an magnetisierbaren Gold-Nanopartikeln unter nachfolgender Bypass-Separation des Katalysators mittels einer neuen Mini-HGMS-Einheit (Hochgradient-Magnetseparation). Dieser Filtertyp erm{\"o}glicht die selektive Trennung magnetischer Partikel aus Suspensionen mit hohem Feststoffgehalt oder Viskosit{\"a}t. Erste Ergebnisse zeigen eine Beladungskapazit{\"a}t des selbstkonstruierten Mini-HGMS von 550 mg goldbeschichteter magnetisierbarer Nanopartikel. Die Oxidation erfolgt bei einem pH-Wertvon 9, bei 40 °C und mit 100 mM Glucose in einem begasten R{\"u}hrkesselreaktor. Das System soll zuk{\"u}nftig zum Katalysatorrecycling von hochviskosen und Feststoffbelasteten Produktstr{\"o}men aus Bioraffinerien eingesetzt werden.}, language = {de} } @misc{TippkoetterMoehring2014, author = {Tippk{\"o}tter, Nils and M{\"o}hring, S.}, title = {Nutzung von F{\"a}ulepilzen f{\"u}r die selektive Gewinnung von Cellulose und Lignin aus nicht vorbehandelter lignocellulosehaltiger Biomasse}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450353}, pages = {1385}, year = {2014}, abstract = {Einige Arten der Braun- und Weißf{\"a}ulepilze sind in der Lage, selektiv entweder Lignin oder Cellulose im Holz abzubauen. Diese Pilze k{\"o}nnen f{\"u}r eine energiesparende Vorbehandlung lignocellulosehaltiger Biomasse f{\"u}r Bioraffinerien genutzt werden, ohne auf technisch aufw{\"a}ndige Aufschlussapparate zur{\"u}ckgreifen zu m{\"u}ssen. Weißf{\"a}ulepilze bauen bevorzugt Lignin ab, wodurch die verbleibende Cellulose leichter f{\"u}r enzymatische Hydrolysen in das Monosaccharid Glucose zug{\"a}nglich wird. Braunf{\"a}ulepilze bauen dagegen Cellulose und Hemicellulose ab. Die Auswirkungen der Behandlung von Weizenstroh mit verschiedenen Pilzarten werden zurzeit untersucht. Dabei werden die Ver{\"a}nderung der enzymatischen Hydrolysierbarkeit des Substrats sowie die gebildeten Ligninderivate bestimmt. Detaillierte Betrachtungen der Biomassever{\"a}nderung werden mithilfe spezifischer F{\"a}rbemethoden durchgef{\"u}hrt, durch die morphologische Ver{\"a}nderungen der Pflanzengewebe in der 3D-Lichtmikroskopie dargestellt werden k{\"o}nnen.}, language = {de} } @misc{TippkoetterWasserscheid2014, author = {Tippk{\"o}tter, Nils and Wasserscheid, P.}, title = {Rapid-Prototyping-Strukturen f{\"u}r ressourceneffiziente Prozesse in Chemie und Biotechnologie}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450451}, pages = {1369 -- 1370}, year = {2014}, abstract = {Die Teilefertigung durch Rapid Prototyping (RP) verk{\"u}rzt den Weg von der Idee bis zum Produkt, wobei unter anderem Optimierungszyklen in geringer Zeit durchlaufen werden k{\"o}nnen. Ferner er{\"o}ffnen neue Entwicklungen in diesem Bereich die M{\"o}glichkeit individueller Produktionsverfahren. Im Unterschied zur klassischen Fertigung von Prototypen wird beim RP mit additiver Schichtfertigung (Additive Layer Manufacturing, ALM) gearbeitet. Je nach Methode werden Fl{\"u}ssigkeiten oder Pulver nach Vorgaben eines 3D-Computermodells sequentiell aufgetragen. Diese Verfahren existieren seit ca. 25 Jahren, jedoch sind seit kurzem ausgesprochen g{\"u}nstige Ger{\"a}te verf{\"u}gbar, die Objekte mit Genauigkeiten bis 20 lm fertigen k{\"o}nnen. Das RP hat in klinischen Anwendungsgebieten bzw. im Bereich des Tissue Engineering bereits vielfach Einzug gefunden. Aber auch chemisch-biotechnologische Entwicklungen k{\"o}nnen von den Verfahren profitieren. So wurden Mikrofluidiksysteme und Bioreaktoren bereits erfolgreich durch RP gefertigt. Durch ALM ist ebenso die Herstellung von Reaktionseinheiten aus biokompatiblen Materialien wie ionotropen Gelen m{\"o}glich. Ferner sind sehr komplexe Strukturierungen von Oberfl{\"a}chen im Nanometerbereich realisierbar, die f{\"u}r die Auftragung heterogener Katalysatoren oder auch Mikroorganismen eingesetzt werden k{\"o}nnen. Auch der Bereich Reaktoren- und Apparatebau kann von den Fortschritten in der additiven Fertigung profitieren. Verfahren wie selektives Laser- oder Elektronenstrahlschmelzen erlauben es, metallische Komponenten in nahezu beliebigen Geometrien zu fertigen. Somit k{\"o}nnen Strukturen verwirklicht werden, die mit konventionellen Fertigungstechniken nur sehr schwer oder {\"u}berhauptnicht herstellbar w{\"a}ren. Durch Anwendung von rechnergest{\"u}tzter Modellierung k{\"o}nnen optimale Strukturen identifiziert und additiv gefertigt werden. Eine anschließende katalytische Funktionalisierung der Oberfl{\"a}che erm{\"o}glicht die Herstellung strukturierter Reaktoren mit maßgeschneiderten Eigenschaften.}, language = {de} } @misc{TippkoetterDuweRaisetal.2014, author = {Tippk{\"o}tter, Nils and Duwe, Anna and Rais, Dominik and Zibek, Susanne and Zorn, H.}, title = {Optimierung und Scale-up der enzymatischen Hydrolyse inkl. Ligninabbau}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450287}, pages = {1515}, year = {2014}, abstract = {Prim{\"a}re Ziele der Hydrolyse pflanzlicher nachwachsender Rohstoffe sind m{\"o}glichst hohe Zuckerkonzentrationen f{\"u}r nachfolgende Fermentationen und eine Maximierung der Produktivit{\"a}t. Zur Optimierung dieser Prozesse wird Organosolv-aufgeschlossene Buchenholz-Cellulose verwendet. Die Hydrolyse des Faserstoffes erfolgt mithilfe von Novozymes CTec2-Enzymen. Die Hydrolysen konnten durch neue R{\"u}hrerelemente auf einen Maßstab von 1000 L {\"u}bertragen werden. Dabei konnten maximale Ausbeuten (g Glucose g -1 Glucose im Faserstoff) bis 81 g g - 1 und Konzentrationen von 152 g L -1 erreicht werden. Zurzeit k{\"o}nnen unter Einsatz eines Feststoffreaktors Cellulosefasern in einer Konzentration bis 400 g L -1 enzymatisch hydrolysiert werden. Die cellulolytischen Enzyme stoßen bei hohen Feststoffkonzentrationen an ihre Grenzen. Mit steigendem Feststoffgehalt nimmt die Hydrolyseausbeute ab. Ein Ansatz zur Steigerung der Effizienz ist der Einsatz ligninolytischer Enzyme, die Ligninreste an der Organosolv-Cellulose aufschließen k{\"o}nnen. Eine solche Verbesserung der Zug{\"a}nglichkeit f{\"u}r cellulolytische Enzyme an ihr Substrat wurde durch Kultur{\"u}berst{\"a}nde verschiedener ligninolytischer Pilze erreicht. Mit Kultur{\"u}berst{\"a}nden von Stereum sp. sind Steigerungen der Glucoseausbeuten um bis zu 30 \% m{\"o}glich.}, language = {de} } @misc{WollnyAlKaidyTippkoetteretal.2014, author = {Wollny, S. and Al-Kaidy, H. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Prozessintegrierte Magnetseparation im Labormaßstab mittels High-Gradient Magnetic Separator (HGMS)}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450618}, pages = {1507}, year = {2014}, abstract = {Die Hochgradient-Magnetseparation (HGMS) stellt eine Alternative zu konventionellen Methoden der Proteinaufarbeitung wie Filtration und Chromatographie dar und dient zudem als Prozessintensivierung. Bisherige Separatoren sind f{\"u}r Anwendungen von mehreren Litern Prozessvolumina Fermentationsmedium und Gramm Magnetpartikel ausgelegt. Bei der Entwicklung und Anwendung neuartiger Magnetpartikeloberfl{\"a}chen ist die Verf{\"u}gbarkeit großer Mengen nicht gegeben. Bisherige Filterkammern erh{\"o}hen zudem den Arbeitsaufwand und verursachen gr{\"o}ßere Partikelverluste bei Sp{\"u}lvorg{\"a}ngen oder der Reinigung aufgrund der Partikeladsorption. F{\"u}r Anwendungen im Maßstab < 500 mL wird deshalb ein Miniatur-Hochgradientfilter (miniHGF) entwickelt. Das Modell wird im 3D-Drucker Makerbot Replicator 2 gefertigt und magne-isierbare Dr{\"a}hte zur Partikelabscheidung eingesetzt. Die Vergleichbarkeit mit einem etablierten Magnetseparator wird anhand der Aufnahme von Durchbruchskurven und Bestimmung der Filtereffizienz untersucht. Die Praxistauglichkeit mit kleinen Volumina wird in wiederholten Batch-Versuchen mit auf Magnetpartikeln immobilisiertem Enzym und einem kolorimetrischen Assay gepr{\"u}ft.}, language = {de} } @misc{DuweSiekerTippkoetteretal.2014, author = {Duwe, A. and Sieker, T. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Grasssilage als Substrat zur fermentativen Produktion organischer S{\"a}uren}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450345}, pages = {1400}, year = {2014}, abstract = {Der zunehmende Bedarf an fossilen Rohstoffen bei gleichzeitig abnehmender Versorgungssicherheit f{\"u}hrt zu einer intensiven Suche nach erneuerbaren Ressourcen. Ein vielversprechendes Ausgangsmaterial mit einer weltweiten Verf{\"u}gbarkeit stellt Gras dar. In 2012 wurden in Deutschland 33 Millionen Tonnen (Heugewicht) Gras auf 4,82 Millionen Hektar Ackerland produziert, davon wurden 60,5 \% siliert. Durch die Silierung kann Gras als Substrat zeitlich uneingeschr{\"a}nkt verf{\"u}gbar sein, ohne dem Risiko des schnellen Verderbs ausgesetzt zu sein. Eine Schl{\"u}sselrolle im Rahmen des Silierprozesses nimmt die Produktion von Milchs{\"a}ure ein. Milchs{\"a}ure ist einbedeutendes biotechnologisches Produkt f{\"u}r die Lebensmittel- und die chemische Industrie. Im Rahmen dieser Arbeit wird die vollst{\"a}ndige Umwandlung der fermentierbaren Zucker in der Silage zu Milchs{\"a}ure angestrebt, um die maximale Ausbeute der organischen S{\"a}ure zu erreichen. Im ersten Verfahrensschritt wird die Silage gepresst und der erhaltene Presskuchen einer Liquid-Hot-Water-Behandlung unterzogen. Durch diese einfache Vorbehandlung k{\"o}nnen hohe Glucoseausbeuten im nachfolgenden SSF-Schritt bei gleichzeitig geringem Enzymeinsatz und Chemikalienverbrauch realisiert werden. Zur Aufreinigung der Milchs{\"a}ure wurden extraktive und chromatographische Methoden untersucht.}, language = {de} } @misc{PothMonzonTippkoetteretal.2009, author = {Poth, S. and Monzon, M. and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Enzymatische Hydrolyse von vorbehandelter Lignocellulose}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.200950244}, pages = {1049}, year = {2009}, abstract = {Die {\"o}konomische Abh{\"a}ngigkeit von fossilen Brennstoffen und der klimatische Wandel durch die Nutzung dieser haben zu einer intensiven Suche nach erneuerbaren Rohstoffen f{\"u}r die Produktion von Chemikalien und Treibstoffen gef{\"u}hrt. Ein viel versprechender Rohstoff in diesem Zusammenhang sind Zucker, die mittels enzymatischer Hydrolyse aus Lignocellulose gewonnen und beispielsweise zu Ethanol umgesetzt werden k{\"o}nnen. Dabei ist es notwendig die Hydrolyse in Hinsicht auf das verwendete Substrat und die Verwendung der entstehenden Hydrolysate f{\"u}r die Fermentation von Alkohol zu optimieren. Als Substrat dienen Cellulose- und Hemicellulose-Fraktionen, die durch thermo-chemische Vorbehandlung von Holz gewonnen werden. Die Vorbehandlung erfolgt bei unserem Projektpartner am Johann Heinrich von Th{\"u}nen Institut in Hamburg. Verschiedene kommerziell erh{\"a}ltliche Enzyme, thermostabile eingeschlossen, wurden auf ihre F{\"a}higkeit hin untersucht, diese Fraktionen zu den entsprechenden Zuckern umsetzen zu k{\"o}nnen. Um die Konzentration an fermentierbaren Zuckern zu steigern werden verschiedene Optimierungen durchgef{\"u}hrt, z. B. die Erh{\"o}hung der Substrat- bzw. Enzymkonzentrationen. Ein weiterer interessanter Ansatz, welcher ebenfalls verfolgt wird, ist es die Hydrolyse und die Fermentation in einem Schritt durchzuf{\"u}hren.}, language = {de} } @misc{StaubTippkoetterSucketal.2009, author = {Staub, C. and Tippk{\"o}tter, Nils and Suck, K. and Ruf, F. and Sohling, U. and Ulber, Roland}, title = {Aufreinigung von Molkeproteinen mittels nat{\"u}rlicher Adsorbermaterialien}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.200950310}, pages = {1299}, year = {2009}, abstract = {Molke als Nebenprodukt der K{\"a}seherstellung wurde lange Zeit als Abfall betrachtet. Bedingt durch ihren hohen BOD (biological oxygen demand) war die direkte Einleitung in Gew{\"a}sser, aber auch der mikrobielle Abbau in Kl{\"a}ranlagen bedenklich. Falls eine Weiterverarbeitung der Molke stattfand, so geschah dies meist zu Molkepulver oder Proteinkonzentrat. Als Untersuchungen der Molkeproteine jedoch unter pharmazeutischen Gesichtspunkten interessante Eigenschaften nahelegten, stieg das Interesse am Bioprodukt Molke und ihren Proteinen an. So stehen beispielsweise f{\"u}r die Molkeproteine a-Lactalbumin (ala) und b-Lactoglobulin (blg) antibakterielle, anticancerogene und diverse andere physiologische Effekte in der Diskussion. Gegenw{\"a}rtig finden meist Membranverfahren zur Aufreinigung von Molkeproteinen Anwendung. Als alternatives Verfahren wurde am Institut f{\"u}r Bioverfahrenstechnik in Kaiserslautern ein chromatographisches Verfahren entwickelt, bei dem nat{\"u}rliche Tonminerale zum Einsatz kamen. Nach chemischer und physikalischer Modifikation des Ausgangsmaterials durch den Hersteller S{\"u}d-Chemie wurden drei der Adsorber f{\"u}r n{\"a}here Untersuchungen zur Auftrennung von Molkeproteinen aus Molkekonzentrat herangezogen. Nach einer Cross-Flow-Filtration des Molkekonzentrats erfolgte die Aufreinigung der Molkeproteine in einem FPLC-System.}, language = {de} } @techreport{BarnatArntzBerneckeretal.2024, type = {Working Paper}, author = {Barnat, Miriam and Arntz, Kristian and Bernecker, Andreas and Fissabre, Anke and Franken, Norbert and Goldbach, Daniel and H{\"u}ning, Felix and J{\"o}rissen, J{\"o}rg and Kirsch, Ansgar and Pettrak, J{\"u}rgen and Rexforth, Matthias and Josef, Rosenkranz and Terstegge, Andreas}, title = {Strategische Gestaltung von Studieng{\"a}ngen f{\"u}r die Zukunft: Ein kollaborativ entwickeltes Self-Assessment}, series = {Hochschulforum Digitalisierung - Diskussionspapier}, journal = {Hochschulforum Digitalisierung - Diskussionspapier}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, pages = {16 Seiten}, year = {2024}, abstract = {Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools f{\"u}r Studieng{\"a}nge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studieng{\"a}ngen zu st{\"a}rken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studieng{\"a}nge dient.}, language = {de} } @article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} }