@article{AkimbekovDigelO’Herasetal.2015, author = {Akimbekov, Nuraly S. and Digel, Ilya and O'Heras, C. and Tastambek, K.T. and Savitskaya, I.S. and Ualyeva, P.S. and Mansurov, Z.A. and Zhubanova, A.A.}, title = {Adsorption of bacterial lipopol ysaccharides on carbonized ri ce husks obtained in the batch experiments}, series = {KazNU Bulletin. Biology series}, volume = {60}, journal = {KazNU Bulletin. Biology series}, number = {No 1/2}, issn = {1563-0218}, pages = {144 -- 148}, year = {2015}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} } @article{OertelBung2015, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Numerische Str{\"o}mungssimulationen von Fließgew{\"a}ssern : Praxisanwendungen und zuk{\"u}nftige Entwicklungen}, series = {Korrespondenz Wasserwirtschaft : KW}, volume = {8}, journal = {Korrespondenz Wasserwirtschaft : KW}, number = {H. 3}, publisher = {Gesellschaft zur F{\"o}rderung der Abwassertechnik}, address = {Hennef}, issn = {1616-430X}, pages = {177 -- 182}, year = {2015}, language = {de} } @inproceedings{NiemuellerFerreinReuteretal.2015, author = {Niemueller, Tim and Ferrein, Alexander and Reuter, Sebastian and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {The RoboCup Logistics League as a Holistic Multi-Robot Smart Factory Benchmark}, series = {Proceedings of the IROS 2015 Open forum on evaluation of results, replication of experiments and benchmarking in robotics research}, booktitle = {Proceedings of the IROS 2015 Open forum on evaluation of results, replication of experiments and benchmarking in robotics research}, pages = {3 S.}, year = {2015}, abstract = {With autonomous mobile robots receiving increased attention in industrial contexts, the need for benchmarks becomes more and more an urgent matter. The RoboCup Logistics League (RCLL) is one specific industry-inspired scenario focusing on production logistics within a Smart Factory. In this paper, we describe how the RCLL allows to assess the performance of a group of robots within the scenario as a whole, focusing specifically on the coordination and cooperation strategies and the methods and components to achieve them. We report on recent efforts to analyze performance of teams in 2014 to understand the implications of the current grading scheme, and derived criteria and metrics for performance assessment based on Key Performance Indicators (KPI) adapted from classic factory evaluation. We reflect on differences and compatibility towards RoCKIn, a recent major benchmarking European project.}, language = {en} } @incollection{NiemuellerReuterEwertetal.2015, author = {Niemueller, Tim and Reuter, Sebastian and Ewert, Daniel and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Decisive Factors for the Success of the Carologistics RoboCup Team in the RoboCup Logistics League 2014}, series = {RoboCup 2014: Robot World Cup XVIII}, booktitle = {RoboCup 2014: Robot World Cup XVIII}, publisher = {Springer}, isbn = {978-3-319-18615-3}, pages = {155 -- 167}, year = {2015}, language = {en} } @inproceedings{KonstantinidisKowalskiMartinezetal.2015, author = {Konstantinidis, K. and Kowalski, Julia and Martinez, C. F. and Dachwald, Bernd and Ewerhart, D. and F{\"o}rstner, R.}, title = {Some necessary technologies for in-situ astrobiology on enceladus}, series = {Proceedings of the International Astronautical Congress}, booktitle = {Proceedings of the International Astronautical Congress}, isbn = {978-151081893-4}, pages = {1354 -- 1372}, year = {2015}, language = {en} } @inproceedings{PhamStaat2015, author = {Pham, Phu Tinh and Staat, Manfred}, title = {A simplification for shakedown analysis of hardening structures}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @incollection{RebelHueningScholletal.2015, author = {Rebel, S{\"o}ren and H{\"u}ning, Felix and Scholl, Ingrid and Ferrein, Alexander}, title = {MQOne: Low-cost design for a rugged-terrain robot platform}, series = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, booktitle = {Intelligent robotics and applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II (Lecture notes in computer science : vol. 9245)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-22875-4 (print) ; 978-3-319-22876-1 (E-Book)}, doi = {10.1007/978-3-319-22876-1_19}, pages = {209 -- 221}, year = {2015}, abstract = {Rugged terrain robot designs are important for field robotics missions. A number of commercial platforms are available, however, at an impressive price. In this paper, we describe the hardware and software component of a low-cost wheeled rugged-terrain robot. The robot is based on an electric children quad bike and is modified to be driven by wire. In terms of climbing properties, operation time and payload it can compete with some of the commercially available platforms, but at a far lower price.}, language = {en} } @inproceedings{FerreinMaierMuehlbacheretal.2015, author = {Ferrein, Alexander and Maier, Christopher and M{\"u}hlbacher, Clemens and Niemueller, Tim and Steinbauer, Gerald and Vassos, Stravros}, title = {Controlling Logistics Robots with the Action-based Language YAGI}, series = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, booktitle = {Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing}, year = {2015}, language = {en} } @article{SchumannRoginSchneideretal.2015, author = {Schumann, Christiane and Rogin, Sabine and Schneider, Horst and Tippk{\"o}tter, Nils and Oster, J{\"u}rgen and Kampeis, Percy}, title = {Simultane Atline-Quantifizierung von Magnetpartikeln und Mikroorganismen bei einer HGMS-Filtration}, series = {Chemie Ingenieur Technik}, volume = {87}, journal = {Chemie Ingenieur Technik}, number = {1-2}, doi = {10.1002/cite.201300158}, pages = {137 -- 149}, year = {2015}, abstract = {Es wird eine neue Atline-Messmethode vorgestellt, mit der w{\"a}hrend einer Hochgradienten-Magnetseparation (HGMS)-Filtration eine simultane Quantifizierung von Magnetpartikeln und Mikroorganismen im Filtrat vorgenommen werden kann. Dabei gelingt die Quantifizierung signifikant besser als mit bisher verwendeten Messmethoden. Mit dieser Methode ist es m{\"o}glich, die Trennleistung einer HGMS-Filtration zu bestimmen und einen Filterdurchbruch durch Konzentrationsanstiege im Bereich einiger µg L-1 von Magnetpartikeln im Filtrat fr{\"u}hzeitig zu detektieren, ohne dass nennenswerte Partikelmengen verloren gehen.}, language = {de} }