Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-11087 Konferenzveröffentlichung Neumann, Hannah, ; Adam, Mario, ; Backes, Klaus, ; Börner, Martin, ; Clees, Tanja, ; Doetsch, Christian, ; Glaeser, Susanne, ; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; May, Johanna, ; Rosenthal, Florian, rosenthal@fh-aachen.de; Sauer, Dirk Uwe, ; Stadler, Ingo, Development of open educational resources for renewable energy and the energy transition process The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material. Freiburg International Solar Energy Society 2021 6 Seiten ISES SWC 2021 ISES Solar World Congress, virtual conference 25-29 October 2021 10.18086/swc.2021.47.03 https://doi.org/10.18086/swc.2021.47.03 Fachbereich Energietechnik OPUS4-11086 Konferenzveröffentlichung Niederwestberg, Stefan, ; Schneider, Falko, f.schneider@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Introduction to a direct irradiated transparent tube particle receiver New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. Melville, NY AIP conference proceedings / American Institute of Physics 2022 9 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086735 https://doi.org/10.1063/5.0086735 Fachbereich Energietechnik OPUS4-11085 Konferenzveröffentlichung Caminos, Ricardo Alexander Chico, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Atti, Vikrama, ; Mahdi, Zahra, ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Sattler, Johannes Christoph, sattler@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Hilger, Patrick, ; Dieckmann, Simon, Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. Melville, NY AIP conference proceedings / American Institute of Physics 2022 8 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086262 https://doi.org/10.1063/5.0086262 Fachbereich Energietechnik OPUS4-11084 Konferenzveröffentlichung Zahra, Mahdi, ; Phani Srujan, Merige, ; Caminos, Ricardo Alexander Chico, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Schmitz, Mark, ; Gielen, Hans, ; Gedle, Yibekal, ; Dersch, Jürgen, Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. Melville, NY AIP conference proceedings / American Institute of Physics 2022 9 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086268 https://doi.org/10.1063/5.0086268 Fachbereich Energietechnik OPUS4-11080 Konferenzveröffentlichung Mahdi, Zahra, ; Dersch, Jürgen, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Dieckmann, Simon, ; Caminos, Ricardo Alexander Chico, ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Schwager, Christian, ; Schmitz, Mark, ; Gielen, Hans, ; Gedle, Yibekal, ; Büscher, Rauno, Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP). Melville, NY AIP conference proceedings / American Institute of Physics 2022 11 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086269 https://doi.org/10.1063/5.0086269 Fachbereich Energietechnik OPUS4-11079 Konferenzveröffentlichung Gedle, Yibekal, ; Schmitz, Mark, ; Gielen, Hans, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Mahdi, Zahra, mahdi@sij.fh-aachen.de; Caminos, Ricardo Alexander Chico, ; Dersch, Jürgen, Analysis of an integrated CSP-PV hybrid power plant In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. Melville, NY AIP conference proceedings / American Institute of Physics 2022 9 Seiten SolarPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086236 https://doi.org/10.1063/5.0086236 Fachbereich Energietechnik OPUS4-11078 Wissenschaftlicher Artikel Schwager, Christian, ; Flesch, Robert, ; Schwarzbözl, Peter, ; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de Advanced two phase flow model for transient molten salt receiver system simulation In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. Amsterdam Elsevier 2022 13 Solar Energy 232 362 375 10.1016/j.solener.2021.12.065 https://doi.org/10.1016/j.solener.2021.12.065 Fachbereich Energietechnik OPUS4-11077 Konferenzveröffentlichung Schwager, Christian, ; Angele, Florian, ; Schwarzbözl, Peter, ; Teixeira Boura, Cristiano José, Boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Model predictive assistance for operational decision making in molten salt receiver systems Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy. Melville, NY AIP conference proceedings / American Institute of Physics 2023 8 Seiten SolarPACES: Solar Power & Chemical Energy Systems 978-0-7354-4623-6 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September-1 October 2021 Online 2815 / 1 10.1063/5.0151514 https://doi.org/10.1063/5.0151514 Fachbereich Energietechnik OPUS4-11076 Konferenzveröffentlichung Schulte, Jonas, j.schulte@sij.fh-aachen.de; Schwager, Christian, ; Noureldin, Kareem, ; May, Martin, ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further. Melville, NY AIP conference proceedings / American Institute of Physics 2023 9 Seiten SolarPACES: Solar Power & Chemical Energy Systems 978-0-7354-4623-6 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September-1 October 2021 Online 2815 / 1 10.1063/5.0148741 https://doi.org/10.1063/5.0148741 Fachbereich Energietechnik OPUS4-11069 Konferenzveröffentlichung Lahrs, Lennart, ; Krisam, Pierre, ; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Envisioning a collaborative energy system planning platform for the energy transition at the district level Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core. Procedings of ECOS 2023 2023 7 The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems 25-30 JUNE, 2023, Las Palmas de Gran Canaria, Spain 3163 3170 10.52202/069564-0284 https://doi.org/10.52202/069564-0284 Fachbereich Energietechnik