Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-4364 Wissenschaftlicher Artikel Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Friedrich, Peter, ; Berger, Jörg, ; Suso, Henri-Pierre, ; Kupyna, Andriy, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring Weinheim Wiley 2011 5 Physica status solidi (a) : applications and material science. 208 (2011), H. 6 1862-6319 1235 1240 campus http://dx.doi.org/10.1002/pssa.201001132 Fachbereich Medizintechnik und Technomathematik OPUS4-4385 Wissenschaftlicher Artikel Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Friedrich, Peter, ; Rysstad, G., ; Berger, J., ; Keusgen, M., ; Schöning, Michael Josef, schoening@fh-aachen.de Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry 2010 3 Procedia Engineering. 5 (2010) 1877-7058 Eurosensor XXIV Conference 264 267 campus http://dx.doi.org/10.1016/j.proeng.2010.09.098 Fachbereich Medizintechnik und Technomathematik OPUS4-4966 Wissenschaftlicher Artikel Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Suco, Henri-Pierre, ; Rysstad, Gunnar, ; Schöning, Michael Josef, schoening@fh-aachen.de Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2. Amsterdam Elsevier 2013 8 Food control 31 2 530 538 campus http://dx.doi.org/10.1016/j.foodcont.2012.11.048 Fachbereich Medizintechnik und Technomathematik OPUS4-5122 Wissenschaftlicher Artikel Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Suso, Henri-Pierre, ; Rysstad, Gunnar, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. Weinheim Wiley 2013 6 Physica status solidi (a) Vol. 210 Iss. 5 877 883 campus http://dx.doi.org/10.1002/pssa.201200920 Fachbereich Medizintechnik und Technomathematik OPUS4-6114 Konferenzveröffentlichung Oberländer, Jan, oberlaender@fh-aachen.de; Reisert, Steffen, reisert@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Wagner, Patrick, ; Schöning, Michael Josef, schoening@fh-aachen.de Kalorimetrische Gassensoren zur H2O2-Detektion in aseptischen Sterilisationsprozessen 2013 4 11. Dresdner Sensor-Symposium : 9.-11.12.2013 978-3-9813484-5-3 234 238 weltweit http://dx.doi.org/10.5162/11dss2013/B7 Fachbereich Medizintechnik und Technomathematik OPUS4-6395 Wissenschaftlicher Artikel Oberländer, Jan, oberlaender@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Boyen, Hans-Gerd, ; Schöning, Michael Josef, schoening@fh-aachen.de Detection of hydrogen peroxide vapor by use of manganese(IV) oxide as catalyst for calorimetric gas sensors In this work, the catalyst manganese(IV) oxide (MnO2), of calorimetric gas sensors (to monitor the sterilization agent vaporized hydrogen peroxide) has been investigated in more detail. Chemical analyses by means of X-ray-induced photoelectron spectroscopy have been performed to unravel the surface chemistry prior and after exposure to hydrogen peroxide vapor at elevated temperature, as applied in the sterilization processes of beverage cartons. The surface characterization reveals a change in oxidation states of the metal oxide catalyst after exposure to hydrogen peroxide. Additionally, a cleaning effect of the catalyst, which itself is attached to the sensor surface by means of a polymer interlayer, could be observed. Weinheim Wiley-VCH 2014 4 Physica status solidi A: Applications and materials science 211 6 1372 1376 10.1002/pssa.201330359 campus http://dx.doi.org/10.1002/pssa.201330359 Fachbereich Medizintechnik und Technomathematik OPUS4-6726 Konferenzveröffentlichung Oberländer, Jan, oberlaender@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Keusgen, M., ; Schöning, Michael Josef, schoening@fh-aachen.de Flexible polyimide-based calorimetric gas sensors for monitoring hy-drogen peroxide in sterilisation processes of aseptic filling machines Düsseldorf VDE-Verl. 2014 1 CD-ROM Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) 978-3-8007-3622-5 1 4 Fachbereich Medizintechnik und Technomathematik OPUS4-7075 Wissenschaftlicher Artikel Oberländer, Jan, oberlaender@fh-aachen.de; Bromm, Alexander, ; Wendeler, Luisa, ; Iken, Heiko, iken@fh-aachen.de; Palomar Duran, Marlena, ; Greeff, Anton, ; Kirchner, Patrick, kirchner@fh-aachen.de; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines Weinheim Wiley 2015 6 Physica status solidi (a) 212 6 1299 1305 10.1002/pssa.201431900 Fachbereich Medizintechnik und Technomathematik OPUS4-7416 Wissenschaftlicher Artikel Oberländer, Jan, oberlaender@fh-aachen.de; Jildeh, Zaid B., ; Kirchner, Patrick, kirchner@fh-aachen.de; Wendeler, Luisa, ; Bromm, Alexander, ; Iken, Heiko, iken@fh-aachen.de; Wagner, Patrick, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes Basel MDPI 2015 12 Sensors 15 10 26115 26127 10.3390/s151026115 Fachbereich Medizintechnik und Technomathematik OPUS4-7590 Konferenzveröffentlichung Oberländer, Jan, oberlaender@fh-aachen.de; Jildeh, Zaid B., ; Kirchner, Patrick, kirchner@fh-aachen.de; Wendeler, Luisa, ; Bromm, Alexander, ; Iken, Heiko, iken@fh-aachen.de; Wagner, Patrick, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes 2015 5 12. Dresdner Sensor-Symposium 2015 163 168 10.5162/12dss2015/P3.11 Fachbereich Medizintechnik und Technomathematik OPUS4-7593 Wissenschaftlicher Artikel Oberländer, Jan, oberlaender@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials Amsterdam Elsevier 2015 6 Electrochimica Acta 183 130 136 10.1016/j.electacta.2015.06.126 Fachbereich Medizintechnik und Technomathematik OPUS4-8046 Wissenschaftlicher Artikel Arreola, Julio, arreola@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Mätzkow, M., ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Surface functionalization for spore-based biosensors with organosilanes Amsterdam Elsevier 2017 Electromchimica Acta In Press, Accepted Manuscript 10.1016/j.electacta.2017.04.157 Fachbereich Medizintechnik und Technomathematik OPUS4-8132 Konferenzveröffentlichung Oberländer, Jan, oberlaender@fh-aachen.de; Arreola, Julio, arreola@fh-aachen.de; Hansen, Christina, ; Greeff, Anton, ; Mayer, Marlena, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Impedimetric Biosensor to Enable Fast Evaluation of Gaseous Sterilization Processes 2017 4 Seiten MDPI Proceedings 1 Eurosensors 2017 Conference, Paris, France, 3-6 September 2017 4 10.3390/proceedings1040435 Fachbereich Medizintechnik und Technomathematik OPUS4-8140 Wissenschaftlicher Artikel Jildeh, Zaid B., ; Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Kremers, Alexander, ; Wagner, Torsten, torsten.wagner@fh-aachen.de; Wagner, Patrick H., ; Schöning, Michael Josef, schoening@fh-aachen.de FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring Weinheim Wiley-VCH 2017 physica status solidi a : applications and materials sciences Early View 10.1002/pssa.201600912 Fachbereich Medizintechnik und Technomathematik OPUS4-8253 Wissenschaftlicher Artikel Oberländer, Jan, oberlaender@fh-aachen.de; Mayer, Marlena, ; Greeff, Anton, ; Keusgen, Michael, ; Schöning, Michael Josef, schoening@fh-aachen.de Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization. Amsterdam Elsevier 2018 7 Biosensors and Bioelectronics 104 87 94 10.1016/j.bios.2017.12.045 bezahl https://doi.org/10.1016/j.bios.2017.12.045 Fachbereich Medizintechnik und Technomathematik OPUS4-8436 Wissenschaftlicher Artikel Jildeh, Zaid B., ; Oberländer, Jan, oberlaender@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Keusgen, Michael, ; Wagner, Patrick H., ; Schöning, Michael Josef, schoening@fh-aachen.de Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques. Weinheim Wiley-VCH 2018 9 Seiten physica status solidi (a): applications and materials science 215 15 Article number 1700920 10.1002/pssa.201700920 campus https://doi.org/10.1002/pssa.201700920 Fachbereich Medizintechnik und Technomathematik OPUS4-8406 Wissenschaftlicher Artikel Vahidpour, Farnoosh, vahidpour@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Schöning, Michael Josef, schoening@fh-aachen.de Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization. Weinheim Wiley-VCH 2018 7 Seiten Phys. Status Solidi A 215 15 Article number 1800044 10.1002/pssa.201800044 bezahl https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201800044 Fachbereich Medizintechnik und Technomathematik OPUS4-8373 Wissenschaftlicher Artikel Jildeh, Zaid B., ; Oberländer, Jan, oberlaender@fh-aachen.de; Kirchner, Patrick, kirchner@fh-aachen.de; Wagner, Patrick H., ; Schöning, Michael Josef, schoening@fh-aachen.de Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst. Basel MDPI 2018 Nanomaterials 8 4 262 10.3390/nano8040262 weltweit https://doi.org/10.3390/nano8040262 Fachbereich Medizintechnik und Technomathematik OPUS4-9215 Wissenschaftlicher Artikel Jildeh, Zaid B., ; Kirchner, Patrick, ; Oberländer, Jan, ; Vahidpour, Farnoosh, ; Wagner, Patrick H., ; Schöning, Michael Josef, Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Amsterdam Elsevier 2020 Sensor and Actuators A: Physical 303 111691 10.1016/j.sna.2019.111691 bezahl https://doi.org/10.1016/j.sna.2019.111691 Fachbereich Medizintechnik und Technomathematik OPUS4-4852 Wissenschaftlicher Artikel Kirchner, Patrick, kirchner@fh-aachen.de; Oberländer, Jan, oberlaender@fh-aachen.de; Friedrich, Peter, ; Berger, Jörg, ; Rysstad, Gunnar, ; Schöning, Michael Josef, schoening@fh-aachen.de; Keusgen, Michael, Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(%, v/v) in a H2O2 concentration range of 0%, v/v to 8%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes. Amsterdam Elsevier 2012 6 Sensors and Actuators B: Chemical 170 Part of special issue "Eurosensors XXIV, 2010" 60 66 10.1016/j.snb.2011.01.032 campus https://doi.org/10.1016/j.snb.2011.01.032 Fachbereich Medizintechnik und Technomathematik