Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-9924 Teil eines Buches Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Göttsche, Joachim, goettsche@sij.fh-aachen.de; Sauerborn, Markus, sauerborn@sij.fh-aachen.de; Kaufhold, O., High Concentration Solar Collectors Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. Amsterdam Elsevier 2022 47 Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications 978-0-12-819734-9 198 245 10.1016/B978-0-12-819727-1.00058-3 bezahl https://doi.org/10.1016/B978-0-12-819727-1.00058-3 Fachbereich Energietechnik OPUS4-9485 Wissenschaftlicher Artikel Göttsche, Joachim, goettsche@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Dümmler, Andreas, duemmler@fh-aachen.de; Maddineni, S. K., Multi-Mirror Array Calculations With Optical Error The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles. 2019 5 Link direkt zum PDF-Download: https://www.comsol.jp/paper/download/856481/200918_SCO4_Paper_COMSOL_jg.pdf 1 6 weltweit https://www.comsol.com/paper/multi-mirror-array-calculations-with-optical-error-95421 Fachbereich Energietechnik