Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-3788 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Breitbach, Gerd, breitbach@fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Stobbe, P., Computational fluid flow of porous resic ceramic filtering modules and optimization of the channel edge form geometry Meerbusch Filtech Exhibitions 2008 4 Proceedings : April 14 - 18, 2008, Leipzig, Germany / hosted by VDI, Society for Chemical and Process Engineering . Vol 2 Verein Deutscher Ingenieure ; World Filtration Congress ; (10 : ; 2008.04.14-18 : ; Leipzig) ; WFC ; (10 : ; 2008.04.14-18 : ; Leipzig) 300 304 Fachbereich Energietechnik OPUS4-3794 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Breitbach, Gerd, breitbach@fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Stobbe, P., Optimization of the geometry of porous SiC ceramic filtering modules using numerical methods Hoboken, NJ Wiley 2008 XII, 384 S. : Ill., graph. Darst. Developments in porous, biological and geopolymer ceramics : a collection of papers presented at the 31st International Conference on Advanced Ceramics and Composites, January 21 - 26, 2007, Daytona Beach, Florida ; [papers presented at the Symposium on Porous Ceramics: Novel Developments and Applications] / ed.: Manuel Brito ... Vol. ed.: Jonathan Salem ... The American Ceramics Society 9780470196403 Ceramic engineering and science proceedings ; 28,9 95 104 Fachbereich Energietechnik OPUS4-4483 Wissenschaftlicher Artikel Göttsche, Joachim, goettsche@sij.fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Funke, J., ; Schwarzbözl, P., First Simulation Results for the Hybridization of Small Solar Power Tower Plants Lisbon Sociedade Portuguesa De Energia Solar (SPES) 2008 7 EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1 978-1-61782-228-5 Kurzfassung unter http://elib.dlr.de/56357/ 1299 1306 Solar-Institut Jülich OPUS4-3997 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus 2010 4 Renewable Energy . 35 (2010), H. 7 0960-1481 1352 1356 campus http://dx.doi.org/10.1016/j.renene.2009.11.003 Fachbereich Energietechnik OPUS4-4447 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de Solarthermische Kraftwerke mit thermischen Speichern 2010 0 Chemie Ingenieur Technik. 82 (2010), H. 9 1522-2640 Special Issue: ProcessNet-Jahrestagung 2010 und 28. Jahrestagung der Biotechnologen V9.01 [Abstract des Vortrags] 1606 1606 campus http://dx.doi.org/10.1002/cite.201050678 Fachbereich Energietechnik OPUS4-5089 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure Two of the main environmental problems of today's society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air's heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100% from renewable energy sources 2012 7 Journal of Engineering Science and Technology Review 5 Special Issue on Renewable Energy Systems 4 48 55 campus http://www.jestr.org/downloads/Volume5Issue4/10.pdf Solar-Institut Jülich OPUS4-6701 Wissenschaftlicher Artikel Kluczka, Sven, kluczka@sij.fh-aachen.de; Eckstein, Julian, ; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Vaeßen, Christiane, vaessen@fh-aachen.de; Roeb, Martin, Process simulation for solar steam and dry reforming In co-operation with the German Aerospace Center, the Solar-Institut Jülich has been analyzing the different technologies that are available for methanol production from CO2 using solar energy. The aim of the project is to extract CO2 from industrial exhaust gases or directly from the atmosphere to recycle it by use of solar energy. Part of the study was the modeling and simulating of a methane reformer for the production of synthesis gas, which can be operated by solar or hybrid heat sources. The reformer has been simplified in such a way that the model is accurate and enables fast calculations. The developed pseudo-homogeneous one- dimensional model can be regarded as a kind of counter-current heat exchanger and is able to incorporate a steam reforming reaction as well as a dry reforming reaction. Amsterdam Elsevier 2014 9 Energy procedia : Proceedings of the SolarPACES 2013 International Conference 49 850 859 10.1016/j.egypro.2014.03.092 weltweit https://doi.org/10.1016/j.egypro.2014.03.092 Solar-Institut Jülich OPUS4-6127 Wissenschaftlicher Artikel Rau, Christoph, rau@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Breitbach, Gerd, breitbach@fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Latzke, Markus, latzke@sij.fh-aachen.de; Sattler, Johannes, Christoph, sattler@sij.fh-aachen.de Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated. Amsterdam Elsevier 2014 9 Energy procedia : proceedings of the SolarPACES 2013 International Conference 49 1481 1490 10.1016/j.egypro.2014.03.157 weltweit https://doi.org/10.1016/j.egypro.2014.03.157 Solar-Institut Jülich OPUS4-6126 Wissenschaftlicher Artikel Kronhardt, Valentina, kronhardt@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Reißel, Martin, reissel@fh-aachen.de; Sattler, Johannes, Christoph, sattler@sij.fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Hänel, Matthias, ; Doerbeck, Till, High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants. Amsterdam Elsevier 2014 7 Energy procedia 49 870 877 10.1016/j.egypro.2014.03.094 weltweit https://doi.org/10.1016/j.egypro.2014.03.094 Solar-Institut Jülich OPUS4-7073 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln Amsterdam Elsevier 2015 9 Applied Thermal Engineering 78 Autor im Original: Spiridon O. Alexopoulos 387 396 10.1016/j.applthermaleng.2015.01.007 campus Solar-Institut Jülich