Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-7073 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln Amsterdam Elsevier 2015 9 Applied Thermal Engineering 78 Autor im Original: Spiridon O. Alexopoulos 387 396 10.1016/j.applthermaleng.2015.01.007 campus Solar-Institut Jülich OPUS4-7933 Wissenschaftlicher Artikel Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de Advances in solar tower technology Weinheim Wiley 2017 18 Wiley interdisciplinary reviews : Energy and Environment : WIREs 6 1 1 19 10.1002/wene.217 Fachbereich Energietechnik OPUS4-9544 Konferenzveröffentlichung El Moussaoui, Noureddine, ; Kassmi, Khalil, ; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Schwarzer, Klemens, schwarzer@sij.fh-aachen.de; Chayeb, Hamid, ; Bachiri, Najib, Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy 2021 Materialstoday: Proceedings 10.1016/j.matpr.2021.03.115 bezahl Fachbereich Energietechnik OPUS4-9485 Wissenschaftlicher Artikel Göttsche, Joachim, goettsche@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Dümmler, Andreas, duemmler@fh-aachen.de; Maddineni, S. K., Multi-Mirror Array Calculations With Optical Error The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles. 2019 5 Link direkt zum PDF-Download: https://www.comsol.jp/paper/download/856481/200918_SCO4_Paper_COMSOL_jg.pdf 1 6 weltweit https://www.comsol.com/paper/multi-mirror-array-calculations-with-optical-error-95421 Fachbereich Energietechnik OPUS4-9924 Teil eines Buches Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Göttsche, Joachim, goettsche@sij.fh-aachen.de; Sauerborn, Markus, sauerborn@sij.fh-aachen.de; Kaufhold, O., High Concentration Solar Collectors Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. Amsterdam Elsevier 2022 47 Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications 978-0-12-819734-9 198 245 10.1016/B978-0-12-819727-1.00058-3 bezahl https://doi.org/10.1016/B978-0-12-819727-1.00058-3 Fachbereich Energietechnik OPUS4-6127 Wissenschaftlicher Artikel Rau, Christoph, rau@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Breitbach, Gerd, breitbach@fh-aachen.de; Hoffschmidt, Bernhard, hoffschmidt@sij.fh-aachen.de; Latzke, Markus, latzke@sij.fh-aachen.de; Sattler, Johannes, Christoph, sattler@sij.fh-aachen.de Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated. Amsterdam Elsevier 2014 9 Energy procedia : proceedings of the SolarPACES 2013 International Conference 49 1481 1490 10.1016/j.egypro.2014.03.157 weltweit https://doi.org/10.1016/j.egypro.2014.03.157 Solar-Institut Jülich OPUS4-9653 Konferenzveröffentlichung Sattler, Johannes Christoph, ; Chico Caminos, Ricardo Alexander, ; Atti, Vikrama Nagababu, vikrama.atti@sij.fh-aachen.de; Ürlings, Nicolas, ; Dutta, Siddharth, ; Ruiz, Victor, ; Kalogirou, Soteris, ; Ktistis, Panayiotis, ; Agathokleous, Rafaela, ; Alexopoulos, Spiros, alexopoulos@fh-aachen.de; Teixeira Boura, Cristiano José, ; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage Melville, NY American Institute of Physics 2020 6 Seiten AIP Conference Proceedings 2303 160004 10.1063/5.0029277 weltweit https://doi.org/10.1063/5.0029277 Solar-Institut Jülich OPUS4-6983 Konferenzveröffentlichung Kronhardt, Valentina, kronhardt@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Reißel, Martin, reissel@fh-aachen.de; Latzke, Markus, latzke@sij.fh-aachen.de; Rendon, C., ; Sattler, Johannes, Christoph, sattler@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Simulation of operational management for the Solar Thermal Test and Demonstration Power Plant Jülich using optimized control strategies of the storage system 2015 5 Energy procedia 1 6 Solar-Institut Jülich OPUS4-7395 Konferenzveröffentlichung Latzke, Markus, latzke@sij.fh-aachen.de; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Kronhardt, Valentina, kronhardt@sij.fh-aachen.de; Rendón, Carlos, rendon@sij.fh-aachen.de; Sattler, Johannes, Christoph, sattler@sij.fh-aachen.de Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver 2015 7 Energy Procedia International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014, Beijing, China 1327 1334 10.1016/j.egypro.2015.03.142 campus Fachbereich Energietechnik OPUS4-5675 Konferenzveröffentlichung Ahlbrink, N., ; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Andersson, J., ; Belhomme, B., ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Gall, J., ; Hirsch, T., viCERP - the Virtual Institute of Central Receiver Power Plant Amsterdam Elsevier 2009 MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35 978-3-901608-35-3 Solar-Institut Jülich