Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-8989 Konferenzveröffentlichung Schwager, Christian, schwager@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Flesch, Robert, ; Alexopoulos, Spiros, alexopoulos@sij.fh-aachen.de; Herrmann, Ulf, ulf.hermann@sij.fh-aachen.de Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation 2019 NaN AIP Conference Proceedings 2126 978-0-7354-1866-0 1 030054-1 030054-8 10.1063/1.5117566 campus https://doi.org/10.1063/1.5117566 Solar-Institut Jülich OPUS4-11078 Wissenschaftlicher Artikel Schwager, Christian, ; Flesch, Robert, ; Schwarzbözl, Peter, ; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de Advanced two phase flow model for transient molten salt receiver system simulation In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. Amsterdam Elsevier 2022 13 Solar Energy 232 362 375 10.1016/j.solener.2021.12.065 https://doi.org/10.1016/j.solener.2021.12.065 Fachbereich Energietechnik