Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Bemerkung Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Zugriffsart Link Abteilungen OPUS4-9099 Konferenzveröffentlichung Mahdi, Zahra, mahdi@sij.fh-aachen.de; Rendón, Carlos, rendon@sij.fh-aachen.de; Schwager, Christian, schwager@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de Novel concept for indirect solar-heated methane reforming Melville, NY AIP Publishing 2019 NaN AIP Conference Proceedings 2126 180014-1 180014-7 10.1063/1.5117694 weltweit https://doi.org/10.1063/1.5117694 Fachbereich Energietechnik OPUS4-11079 Konferenzveröffentlichung Gedle, Yibekal, ; Schmitz, Mark, ; Gielen, Hans, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Mahdi, Zahra, mahdi@sij.fh-aachen.de; Caminos, Ricardo Alexander Chico, ; Dersch, Jürgen, Analysis of an integrated CSP-PV hybrid power plant In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. Melville, NY AIP conference proceedings / American Institute of Physics 2022 9 Seiten SolarPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086236 https://doi.org/10.1063/5.0086236 Fachbereich Energietechnik OPUS4-11080 Konferenzveröffentlichung Mahdi, Zahra, ; Dersch, Jürgen, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Dieckmann, Simon, ; Caminos, Ricardo Alexander Chico, ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Schwager, Christian, ; Schmitz, Mark, ; Gielen, Hans, ; Gedle, Yibekal, ; Büscher, Rauno, Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP). Melville, NY AIP conference proceedings / American Institute of Physics 2022 11 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086269 https://doi.org/10.1063/5.0086269 Fachbereich Energietechnik OPUS4-11084 Konferenzveröffentlichung Zahra, Mahdi, ; Phani Srujan, Merige, ; Caminos, Ricardo Alexander Chico, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Schmitz, Mark, ; Gielen, Hans, ; Gedle, Yibekal, ; Dersch, Jürgen, Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. Melville, NY AIP conference proceedings / American Institute of Physics 2022 9 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086268 https://doi.org/10.1063/5.0086268 Fachbereich Energietechnik OPUS4-11085 Konferenzveröffentlichung Caminos, Ricardo Alexander Chico, ; Schmitz, Pascal, schmitz@sij.fh-aachen.de; Atti, Vikrama, ; Mahdi, Zahra, ; Teixeira Boura, Cristiano José, boura@sij.fh-aachen.de; Sattler, Johannes Christoph, sattler@sij.fh-aachen.de; Herrmann, Ulf, ulf.herrmann@sij.fh-aachen.de; Hilger, Patrick, ; Dieckmann, Simon, Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called "micro heliostat". Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. Melville, NY AIP conference proceedings / American Institute of Physics 2022 8 Seiten SOLARPACES 2020 978-0-7354-4195-8 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September-2 October 2020 Freiburg, Germany 2445 / 1 10.1063/5.0086262 https://doi.org/10.1063/5.0086262 Fachbereich Energietechnik