TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zhantlessova, Sirina A1 - Savitskaya, Irina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Talipova, Aizhan A1 - Pogrebnjak, Alexander A1 - Digel, Ilya T1 - Advanced “Green” prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy JF - Polymers N2 - Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality. KW - coculture KW - pullulan KW - exopolysaccharides KW - prebiotic KW - bacterial cellulose Y1 - 2022 U6 - https://doi.org/10.3390/polym14153224 SN - 2073-4360 N1 - This article belongs to the Special Issue "Cellulose Based Composites" VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Savitskaya, Irina A1 - Zhantlessova, Sirina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Shokatayeva, Dina A1 - Sinyavsky, Yuriy A1 - Kushugulova, Almagul A1 - Digel, Ilya T1 - Prebiotic cellulose–pullulan matrix as a “vehicle” for probiotic biofilm delivery to the host large intestine JF - Polymers N2 - This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies. KW - immobilization KW - prebiotic KW - bacterial cellulose KW - biofilms KW - Lactobacillus rhamnosus GG Y1 - 2023 U6 - https://doi.org/10.3390/polym16010030 N1 - This article belongs to the Section "Polymer Composites and Nanocomposites" IS - 16(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - https://doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Artmann, Gerhard A1 - Kelemen, Christina A1 - Porst, Dariusz A1 - Büldt, G. [u.a.] T1 - Temperature transitions of protein properties in human red blood cells. Artmann, Gerhard Michael, Kelemen, Christina; Porst, D.; Büldt, G.; Chien, S. JF - Biophysical Journal. 75 (1998), H. 6 Y1 - 1998 SN - 1542-0086 N1 - http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1299989&blobtype=pdf SP - 3179 EP - 3183 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Shi, Young de A1 - Agosti, R. A1 - Longhini, E. T1 - A modified casson equation to characterize blood rheology for hypertension. Shi, Young de; Artmann, Gerhard Michael; Agosti, R.; Longhini, E. JF - Clinical Hemorheology Microcirculation. 19 (1998), H. 2 Y1 - 1998 SN - 1386-0291 SP - 115 EP - 127 ER - TY - JOUR A1 - Li, Anlan A1 - Shi, Young de A1 - Landsmann, B. A1 - Schankowski-Bouvier, P. A1 - Dikta, Gerhard A1 - Bauer, U. A1 - Artmann, Gerhard T1 - Hemorheology and walking distance of Peripheral Arterial Occlusive Disease patients during treatment with Ginkgo-biloba extract JF - Acta Pharmacologica Sinica = ZHONGUO YAOLI XUEBAO. 19 (1998), H. 5 Y1 - 1998 SN - 1745-7254 N1 - ISSN der parallelen Ausgabe 1671-4083; China-Zs.-Code: CN31-1347 abstract frei unter SP - 417 EP - 421 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Sung, K.-L. Paul A1 - Horn, Thomas A1 - Whittemore, Darren [u.a.] T1 - Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Artmann, Gerhard Michael; Sung, K.-L. Paul; Horn, Thomas; Whittemore, Darren; Norwich, Gerald; Chien, Shu JF - Biophysical journal. 72 (1997), H. 3 Y1 - 1997 SN - 1542-0086 SP - 1434 EP - 1441 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Trzewik, Jürgen A1 - Ates, M. T1 - A novel method to quantify mechanical tension in cell monolayers. Trzewik, Jürgen; Ates, M., Artmann, Gerhard Michael JF - Biomedizinische Technik. 47 (2002), H. Suppl. 1. Pt. 1 Y1 - 2002 SN - 0013-5585 N1 - Druckausgabe unter 63 Z 47 vorhanden SP - 379 EP - 381 ER - TY - JOUR A1 - Maggakis-Kelemen, Christina A1 - Biselli, Manfred A1 - Artmann, Gerhard T1 - Determination of the elastic shear modulus of cultured human red blood cells JF - Biomedizinische Technik. 47 (2002), H. Suppl. 1 Pt. 1 Y1 - 2002 SN - 0013-5585 N1 - Druckausgabe unter 63 Z 471 vorhanden SP - 106 EP - 109 ER -