TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Increased shoulder muscle stretch reflex elicitability in supine subject posture JF - Isokinetics and Exercise Science N2 - BACKGROUND: Muscle stretch reflexes are widely used to examine neural muscle function. The knowledge of reflex response in muscles crossing the shoulder is limited. OBJECTIVE: To quantify reflex modulation according to various subject postures and different procedures of muscle pre-activation steering. METHODS: Thirteen healthy male participants performed two sets of external shoulder rotation stretches in various positions and with different procedures of muscle pre-activation steering on an isokinetic dynamometer over a range of two different pre-activation levels. All stretches were applied with a dynamometer acceleration of 104∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexive response was observed in all tested muscles in all experimental conditions. The reflex elicitation rate revealed a significant muscle main effect (F (5,288) = 2.358, ρ= 0.040; η2= 0.039; f= 0.637) and a significant test condition main effect (F (1,288) = 5.884, ρ= 0.016; η2= 0.020; f= 0.143). Reflex latency revealed a significant muscle pre-activation level main effect (F (1,274) = 5.008, ρ= 0.026; η2= 0.018; f= 0.469). CONCLUSION: Muscular reflexive response was more consistent in the primary internal rotators of the shoulder. Supine posture in combination with visual feedback of muscle pre-activation level enhanced the reflex elicitation rate. Y1 - 2020 U6 - https://doi.org/10.3233/IES-192219 SN - 1878-5913 VL - 28 IS - 2 SP - 139 EP - 146 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Staeudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katya N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity JF - npj Microgravity N2 - Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle−series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study. Y1 - 2021 U6 - https://doi.org/10.1038/s41526-021-00155-7 SN - 2373-8065 N1 - Corresponding author: Charlotte Richter VL - 7 IS - Article number: 32 PB - Springer Nature CY - New York ER - TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men JF - Journal of Electromyography and Kinesiology N2 - Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall “good” relative reliability. SRD 95% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended. KW - stretch reflex KW - shoulder KW - test-retest reliability KW - intraclass correlation coefficient KW - standard error of measurement Y1 - 2021 U6 - https://doi.org/10.1016/j.jelekin.2021.102611 SN - 1050-6411 VL - 62 IS - Article 102611 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zange, Jochen A1 - Schopen, Kathrin A1 - Albracht, Kirsten A1 - Gerlach, Darius A. A1 - Frings-Meuthen, Petra A1 - Maffiuletti, Nicola A. A1 - Bloch, Wilhelm A1 - Rittweger, Jörn T1 - Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial JF - Plos one Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0171562 VL - 12 IS - 2 ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk A1 - Albracht, Kirsten T1 - Robotergestütztes System für ein verbessertes neuromuskuläres Aufbautraining der Beinstrecker JF - at - Automatisierungstechnik N2 - Neuromuskuläres Aufbautraining der Beinstrecker ist ein wichtiger Bestandteil in der Rehabilitation und Prävention von Muskel-Skelett-Erkrankungen. Effektives Training erfordert hohe Muskelkräfte, die gleichzeitig hohe Belastungen von bereits geschädigten Strukturen bedeuten. Um trainingsinduzierte Schädigungen zu vermeiden, müssen diese Kräfte kontrolliert werden. Mit heutigen Trainingsgeräten können diese Ziele allerdings nicht erreicht werden. Für ein sicheres und effektives Training sollen durch den Einsatz der Robotik, Sensorik, eines Regelkreises sowie Muskel-Skelett-Modellen Belastungen am Zielgewebe direkt berechnet und kontrolliert werden. Auf Basis zweier Vorstudien zu möglichen Stellgrößen wird der Aufbau eines robotischen Systems vorgestellt, das sowohl für Forschungszwecke als auch zur Entwicklung neuartiger Trainingsgeräte verwendet werden kann. Y1 - 2016 U6 - https://doi.org/10.1515/auto-2016-0044 SN - 2196-677X VL - 64 IS - 11 SP - 905 EP - 914 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Waldvogel, Janice A1 - Ritzmann, Ramona A1 - Freyler, Kathrin A1 - Helm, Michael A1 - Monti, Elena A1 - Albracht, Kirsten A1 - Stäudle, Benjamin A1 - Gollhofer, Albert A1 - Narici, Marco T1 - The Anticipation of Gravity in Human Ballistic Movement JF - Frontiers in Physiology N2 - Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation. Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.614060 SN - 1664-042X PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Morat, Mareike A1 - Faude, Oliver A1 - Hanssen, Henner A1 - Ludyga, Sebastian A1 - Zacher, Jonas A1 - Eibl, Angi A1 - Albracht, Kirsten A1 - Donath, Lars T1 - Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial JF - International Journal of Environmental Research and Public Health N2 - Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations. KW - agility KW - prevention KW - healthy aging KW - community dwelling KW - psychosocial Y1 - 2020 U6 - https://doi.org/10.3390/ijerph17061853 SN - 1660-4601 VL - 17 IS - 6 SP - 1 EP - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Herssens, Nolan A1 - Cowburn, James A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Cazzola, Dario A1 - Colyer, Steffi A1 - Minetti, Alberto E. A1 - Pavei, Gaspare A1 - Rittweger, Jörn A1 - Weber, Tobias A1 - Green, David A. ED - Cattaneo, Luigi T1 - Movement in low gravity environments (MoLo) programme – the MoLo-L.O.O.P. study protocol JF - PLOS ONE / Public Library of Science N2 - Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. Y1 - 2022 U6 - https://doi.org/10.1371/journal.pone.0278051 SN - 1932-6203 VL - 17 IS - 11 PB - Plos CY - San Francisco ER - TY - JOUR A1 - Waldvogel, Janice A1 - Freyler, Kathrin A1 - Helm, Michael A1 - Monti, Elena A1 - Stäudle, Benjamin A1 - Gollhofer, Albert A1 - Narici, Marco V. A1 - Ritzmann, Ramona A1 - Albracht, Kirsten T1 - Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks JF - Journal of Applied Physiology N2 - This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy. KW - electromyography KW - locomotion KW - overload KW - stretch-shortening cycle KW - ultrasound Y1 - 2023 U6 - https://doi.org/10.1152/japplphysiol.00279.2022 SN - 1522-1601 (Onlineausgabe) SN - 8750-7587 (Druckausgabe) VL - 134 IS - 1 SP - 190 EP - 202 PB - American Physiological Society CY - Bethesda, Md. ER - TY - JOUR A1 - Heieis, Jule A1 - Böcker, Jonas A1 - D'Angelo, Olfa A1 - Mittag, Uwe A1 - Albracht, Kirsten A1 - Schönau, Eckhard A1 - Meyer, Andreas A1 - Voigtmann, Thomas A1 - Rittweger, Jörn T1 - Curvature of gastrocnemius muscle fascicles as function of muscle–tendon complex length and contraction in humans JF - Physiological Reports N2 - It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle–tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle–tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle–tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5%, 25%, 50%, and 75% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle–tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m−1 from 0% to 100%; p = 0.006). Muscle–tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m−1 per 10°; p < 0.001), inverse mean fascicle length (20 m−1 per cm−1; p = 0.003), and mean fascicle strain (−0.07 m−1 per +10%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure. KW - biomechanics KW - connective tissue KW - physiology KW - ultrasound Y1 - 2023 U6 - https://doi.org/10.14814/phy2.15739 SN - 2051-817X VL - 11 IS - 11 SP - e15739, Seite 1-11 PB - Wiley ER -