TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Başkurt, Oǧuz Kerim A1 - Meiselman, H. J. T1 - Red blood cell aggregation in experimental sepsis . Baskurt, O. K.; Temiz, A.; Meiselman, H. J. JF - Journal of Laboratory and Clinical Medicine. 130 (1997), H. 2 Y1 - 1997 SN - 0022-2143 SP - 183 EP - 190 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Başkurt, Oǧuz Kerim A1 - Edremitlioglu, M. T1 - Effect of erythrocyte deformability on myocardial hematocrit gradient. Baskurt, O.K.; Edremitlioglu, M.; Temiz, A. JF - American Journal of Physiology: Heart and Circulatory Physiology. 268 (1995), H. 1 Y1 - 1995 SN - 0363-6135 SP - 260 EP - 264 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mikucki, Jill Ann A1 - Schuler, C. G. A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Tuttle, M. J. A1 - Chua, Michelle A1 - Davis, R. A1 - Purcell, Alicia A1 - Ghosh, D. A1 - Francke, G. A1 - Feldmann, M. A1 - Espe, C. A1 - Heinen, Dirk A1 - Dachwald, Bernd A1 - Clemens, Joachim A1 - Lyons, W. B. A1 - Tulaczyk, S. T1 - Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem JF - Astrobiology N2 - Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts. Y1 - 2023 U6 - https://doi.org/10.1089/ast.2021.0102 SN - 1557-8070 (online) SN - 153-1074 (print) VL - 23 IS - 11 SP - 1165 EP - 1178 PB - Liebert CY - New York, NY ER - TY - JOUR A1 - Zhubanova, Azhar A. A1 - Digel, Ilya A1 - Nojima, H. A1 - Artmann, Gerhard T1 - The use of bactericidal effects of cluster ions generated by plasma in medical biotechnology N2 - The most of conventional methods of air purification use the power of a fan to draw in air and pass it through a filter. The problem of bacterial contamination of inner parts of such a type of air conditioners in some cases draws attention towards alternative air-cleaning systems. Some manufacturers offer to use the ozone's bactericidal and deodorizing effects, but the wide spreading of such systems is restricted by the fact that toxic effects of ozone in respect of human beings are well known. In 2000 Sharp Inc. introduced "Plasma Cluster Ions (PCI)" air purification technology, which uses plasma discharge to generate cluster ions (I 0-14 ). This technology has been developed for those customers that are conscious about health and hygiene. In our experiments, we focused on some principal aspects of plasma-generated ions application - time-dependency and irreversibility of bactericidal action, spatial and kinetic characteristics of emitted cluster particles, their chemical targets in the microbial cells. KW - Clusterion KW - Raumluft KW - Luftreiniger KW - Plasmacluster ion technology KW - Air purification Y1 - 2007 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Zerlin, Kay A1 - Digel, Ilya T1 - Hemoglobin Senses Body Temperature JF - Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.) Y1 - 2008 SN - 978-3-540-75408-4 SP - 415 EP - 447 PB - Springer CY - Berlin ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Digel, Ilya A1 - Embs, Jan P. A1 - Unruh, Tobias A1 - Tehei, M. A1 - Zaccai, G. A1 - Büldt, G. A1 - Artmann, Gerhard T1 - From powder to solution : Hydration dependence of human hemoglobin dynamics correlated to body temperature JF - Biophysical Journal. 96 (2009), H. 12 Y1 - 2009 SN - 0006-3495 SP - 5073 EP - 5081 PB - Cell Press CY - Cambridge, Mass. ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Zerlin, Kay A1 - Digel, Ilya A1 - Büldt, Georg A1 - Zaccai, Guiseppe A1 - Artmann, Gerhard T1 - Dynamics and interactions of hemoglobin in red blood cells JF - Tissue Engineering Part A. 14 (2008), H. 5 Y1 - 2008 SN - 1937-3341 N1 - TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal SP - 724 EP - 724 ER - TY - JOUR A1 - Stadler, A. M. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Embs, Jan P. A1 - Zaccai, Joe A1 - Büldt, Georg T1 - Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature JF - Biophysical Journal. 95 (2008), H. 11 Y1 - 2008 SN - 1542-0086 SP - 5449 EP - 5461 ER -