TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength T2 - Proceedings of UNCECOMP 2021 N2 - A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm. Y1 - 2021 SN - 978-618-85072-6-5 U6 - https://doi.org/10.7712/120221.8041.19047 N1 - UNCECOMP 2021, 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, streamed from Athens, Greece, 28–30 June 2021. SP - 323 EP - 338 ER - TY - JOUR A1 - Hackl, Michael A1 - Nacov, Julia A1 - Kammerlohr, Sandra A1 - Staat, Manfred A1 - Buess, Eduard A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure JF - The American Journal of Sports Medicine Y1 - 2021 U6 - https://doi.org/10.1177/03635465211006138 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 7 SP - 1847 EP - 1853 PB - Sage CY - London ER - TY - JOUR A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - Direct plastic structural design under random strength and random load by chance constrained programming JF - European Journal of Mechanics - A/Solids Y1 - 2021 U6 - https://doi.org/10.1016/j.euromechsol.2020.104106 SN - 0997-7538 VL - 85 IS - Article 104106 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Staeudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katya N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity JF - npj Microgravity N2 - Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle−series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study. Y1 - 2021 U6 - https://doi.org/10.1038/s41526-021-00155-7 SN - 2373-8065 N1 - Corresponding author: Charlotte Richter VL - 7 IS - Article number: 32 PB - Springer Nature CY - New York ER - TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men JF - Journal of Electromyography and Kinesiology N2 - Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall “good” relative reliability. SRD 95% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended. KW - stretch reflex KW - shoulder KW - test-retest reliability KW - intraclass correlation coefficient KW - standard error of measurement Y1 - 2021 U6 - https://doi.org/10.1016/j.jelekin.2021.102611 SN - 1050-6411 VL - 62 IS - Article 102611 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Waldvogel, Janice A1 - Ritzmann, Ramona A1 - Freyler, Kathrin A1 - Helm, Michael A1 - Monti, Elena A1 - Albracht, Kirsten A1 - Stäudle, Benjamin A1 - Gollhofer, Albert A1 - Narici, Marco T1 - The Anticipation of Gravity in Human Ballistic Movement JF - Frontiers in Physiology N2 - Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation. Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.614060 SN - 1664-042X PB - Frontiers CY - Lausanne ER - TY - RPRT A1 - Göll, Fabian A1 - Braunstein, Björn A1 - Albracht, Kirsten T1 - Lernende roboterassistierte Systeme für das neuromuskuläre Training - RoSylerNT; Teilvorhaben: Entwicklung eines neuromuskuloskelettalen Modells als Basis für die Interaktionsfähigkeiten autonomer Assistenzsysteme KW - Robotik KW - Rehabilitationsmedizin KW - Neuromuskuläres System KW - Rehabilitatives Training KW - Trainingsgerät Y1 - 2021 U6 - https://doi.org/10.2314/KXP:1855318741 N1 - Förderkennzeichen BMBF 16SV7853 Schlussbericht der Deutschen Sporthochschule Köln für das Vorhaben RoSylerNT Laufzeit: 01.08.2017-31.07.2021 PB - Deutsche Sporthochschule Köln CY - Köln ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Björn A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Süss, Alexander A1 - Weber, Tobias A1 - Mileva, Katya N. A1 - Rittweger, Jörn A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities JF - Scientific reports N2 - The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity. KW - Bone quality and biomechanics KW - Environmental impact KW - Skeletal muscle KW - Tendons KW - Ultrasound Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-00527-9 SN - 2045-2322 N1 - Corresponding author: Charlotte Richter VL - 11 IS - Article number: 22555 PB - Springer Nature CY - London ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Willwacher, Steffen A1 - Albracht, Kirsten T1 - Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration JF - Scandinavian Journal of Medicine & Science in Sports N2 - The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work. KW - locomotion KW - muscle mechanics KW - running KW - sprint start KW - ultrasonography Y1 - 2021 U6 - https://doi.org/10.1111/sms.13956 SN - 0905-7188 (Druckausgabe) SN - 1600-0838 (Onlineausgabe) VL - 31 IS - 7 SP - 1471 EP - 1480 PB - Wiley-Blackwell CY - Oxford ER -