TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Lingam, Manasvi A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Kervella, Pierre A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd T1 - Interstellar now! Missions to explore nearby interstellar objects JF - Advances in Space Research N2 - The recently discovered first hyperbolic objects passing through the Solar System, 1I/’Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. KW - Interstellar objects KW - Trajectories KW - Missions Y1 - 2022 U6 - https://doi.org/10.1016/j.asr.2021.06.052 SN - 0273-1177 VL - 69 IS - 1 SP - 402 EP - 414 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Razzaque, Mohammed S. T1 - Vitamin D and Phosphate Interactions in Health and Disease T2 - Phosphate Metabolism N2 - Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease. KW - Vitamin D KW - PTH KW - Phosphate KW - FGF23 KW - Klotho Y1 - 2022 SN - 978-3-030-91621-3 U6 - https://doi.org/10.1007/978-3-030-91623-7_5 SP - 37 EP - 46 PB - Springer CY - Cham ER - TY - JOUR A1 - Zhantlessova, Sirina A1 - Savitskaya, Irina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Talipova, Aizhan A1 - Pogrebnjak, Alexander A1 - Digel, Ilya T1 - Advanced “Green” prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy JF - Polymers N2 - Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality. KW - coculture KW - pullulan KW - exopolysaccharides KW - prebiotic KW - bacterial cellulose Y1 - 2022 U6 - https://doi.org/10.3390/polym14153224 SN - 2073-4360 N1 - This article belongs to the Special Issue "Cellulose Based Composites" VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - GEN A1 - Topcu, Murat A1 - Madabhushi, Gopal Santana Phani A1 - Staat, Manfred T1 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster N2 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis (FEA) Y1 - 2022 U6 - https://doi.org/10.6084/m9.figshare.19333295.v2 ER - TY - CHAP A1 - Staat, Manfred A1 - Tran, Ngoc Trinh T1 - Strain based brittle failure criteria for rocks T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These “paradox” fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. KW - Extension fracture KW - Extension strain criterion KW - Mohr–Coulomb criterion KW - Evolution of damage Y1 - 2023 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 500 EP - 509 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Topçu, Murat A1 - Madabhushi, Gopal S.P. A1 - Staat, Manfred T1 - A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius JF - International Journal of Solids and Structures N2 - A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis Y1 - 2022 U6 - https://doi.org/10.1016/j.ijsolstr.2022.111464 SN - 0020-7683 VL - 239–240 IS - Art. No. 111464 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Virgin passive colon biomechanics and a literature review of active contraction constitutive models JF - Biomechanics N2 - The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. KW - virgin passive KW - strain energy function KW - smooth muscle contraction KW - viscoelasticity KW - damage Y1 - 2022 U6 - https://doi.org/10.3390/biomechanics2020013 SN - 2673-7078 VL - 2 IS - 2 SP - 138 EP - 157 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - FEM shakedown analysis of structures under random strength with chance constrained programming JF - Vietnam Journal of Mechanics N2 - Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable. KW - limit analysis KW - shakedown analysis KW - chance constrained programming KW - stochastic programming KW - reliability of structures Y1 - 2022 U6 - https://doi.org/10.15625/0866-7136/17943 SN - 0866-7136 SN - 2815-5882 VL - 44 IS - 4 SP - 459 EP - 473 PB - Vietnam Academy of Science and Technology (VAST) ER -