TY - JOUR A1 - Albanna, Walid A1 - Kotliar, Konstantin A1 - Lüke, Jan Niklas A1 - Alpdogan, Serdar A1 - Conzen, Catharina A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Vilser, Walthard A1 - Schneider, Toni A1 - Schubert, Gerrit Alexander T1 - Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis JF - Plos one N2 - Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0204689 VL - 13 IS - 10 PB - PLOS CY - San Francisco ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - BOOK A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül A1 - Zhubanova, Azhar A. A1 - Digel, Ilya ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Biological, physical and technical basics of cell engineering Y1 - 2018 SN - 978-981-10-7903-0 PB - Springer CY - Singapore ER - TY - CHAP A1 - Baader, Fabian A1 - Reiswich, M. A1 - Bartsch, M. A1 - Keller, D. A1 - Tiede, E. A1 - Keck, G. A1 - Demircian, A. A1 - Friedrich, M. A1 - Dachwald, Bernd A1 - Schüller, K. A1 - Lehmann, R. A1 - Chojetzki, R. A1 - Durand, C. A1 - Rapp, L. A1 - Kowalski, Julia A1 - Förstner, R. T1 - VIPER - Student research on extraterrestrical ice penetration technology T2 - Proceedings of the 2nd Symposium on Space Educational Activities N2 - Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process. Y1 - 2018 SP - 1 EP - 6 ER - TY - JOUR A1 - Balakirski, Galina A1 - Kotliar, Konstantin A1 - Pauly, Karolin J. A1 - Krings, Laura K. A1 - Rübben, Albert A1 - Baron, Jens M. A1 - Schmitt, Laurenz T1 - Surgical Site Infections After Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience JF - Dermatologic Surgery N2 - BACKGROUND Immunosuppression is often considered as an indication for antibiotic prophylaxis to prevent surgical site infections (SSI) while performing skin surgery. However, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. PATIENTS AND METHODS All patients of the Department of Dermatology and Allergology at the University Hospital of RWTH Aachen in Aachen, Germany, who underwent hospitalization for a dermatologic surgery between June 2016 and January 2017 (6 months), were followed up after surgery until completion of the wound healing process. The follow-up addressed the occurrence of SSI and the need for systemic antibiotics after the operative procedure. Immunocompromised patients were compared with immunocompetent patients. The investigation was conducted as a retrospective analysis of patient records. RESULTS The authors performed 284 dermatologic surgeries in 177 patients. Nineteen percent (54/284) of the skin surgery was performed on immunocompromised patients. The most common indications for surgical treatment were nonmelanoma skin cancer and malignant melanomas. Surgical site infections occurred in 6.7% (19/284) of the cases. In 95% (18/19), systemic antibiotic treatment was needed. Twenty-one percent of all SSI (4/19) were seen in immunosuppressed patients. CONCLUSION According to the authors' data, immunosuppression does not represent a significant risk factor for SSI after dermatologic surgery. However, larger prospective studies are needed to make specific recommendations on the use of antibiotic prophylaxis while performing skin surgery in these patients. The available data on complications after dermatologic surgery have improved over the past years. Particularly, additional risk factors have been identified for surgical site infections (SSI). Purulent surgical sites, older age, involvement of head, neck, and acral regions, and also the involvement of less experienced surgeons have been reported to increase the risk of the SSI after dermatologic surgeries.1 In general, the incidence of SSI after skin surgery is considered to be low.1,2 However, antibiotics in dermatologic surgeries, especially in the perioperative setting, seem to be overused,3,4 particularly regarding developing antibiotic resistances and side effects. Immunosuppression has been recommended to be taken into consideration as an additional indication for antibiotic prophylaxis to prevent SSI after skin surgery in special cases.5,6 However, these recommendations do not specify the exact dermatologic surgeries, and were not specifically developed for dermatologic surgery patients and treatments, but adopted from other surgical fields.6 According to the survey conducted on American College of Mohs Surgery members in 2012, 13% to 29% of the surgeons administered antibiotic prophylaxis to immunocompromised patients to prevent SSI while performing dermatologic surgery on noninfected skin,3 although this was not recommended by Journal of the American Academy of Dermatology Advisory Statement. Indeed, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. However, it is possible that due to the insufficient evidence on the risk of SSI occurrence in this patient group, dermatologic surgeons tend to overuse perioperative antibiotic prophylaxis. To make specific recommendations on the use of antibiotic prophylaxis in immunosuppressed patients in the field of skin surgery, more information about the incidence of SSI after dermatologic surgery in these patients is needed. The aim of this study was to fill this data gap by investigating whether there is an increased risk of SSI after skin surgery in immunocompromised patients compared with immunocompetent patients. Y1 - 2018 U6 - https://doi.org/10.1097/DSS.0000000000001615 IS - 44 (12) SP - 1525 EP - 1536 PB - Wolters Kluwer ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Computational Analysis of Pelvic Floor Dysfunction T2 - Women's Health and Biomechanics N2 - Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence. KW - Pelvic muscle KW - Muscle fibers KW - Passive stretching KW - Pelvic floor dysfunction Y1 - 2018 SN - 978-3-319-71574-2 U6 - https://doi.org/10.1007/978-3-319-71574-2_17 N1 - Lecture Notes in Computational Vision and Biomechanics, vol 29 SP - 217 EP - 230 PB - Springer CY - Cham ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Jabbari, Medisa A1 - Anding, Ralf A1 - Staat, Manfred T1 - Surgical treatment of vaginal vault prolapse using different prosthetic mesh implants: a finite element analysis JF - tm - Technisches Messen N2 - Particularly multiparous elderly women may suffer from vaginal vault prolapse after hysterectomy due to weak support from lax apical ligaments. A decreased amount of estrogen and progesterone in older age is assumed to remodel the collagen thereby reducing tissue stiffness. Sacrocolpopexy is either performed as open or laparoscopic surgery using prosthetic mesh implants to substitute lax ligaments. Y-shaped mesh models (DynaMesh, Gynemesh, and Ultrapro) are implanted in a 3D female pelvic floor finite element model in the extraperitoneal space from the vaginal cuff to the first sacral (S1) bone below promontory. Numerical simulations are conducted during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues are modeled as incompressible, isotropic hyperelastic materials whereas the meshes are modeled either as orthotropic linear elastic or as isotropic hyperlastic materials. The positions of the vaginal cuff and the bladder base are calculated from the pubococcygeal line for female pelvic floor at rest, for prolapse and after repair using the three meshes. Due to mesh mechanics and mesh pore deformation along the loaded direction, the DynaMesh with regular rectangular mesh pores is found to provide better mechanical support to the organs than the Gynemesh and the Ultrapro with irregular hexagonal mesh pores. Insbesondere ältere, mehrgebährende Frauen leiden häufiger an einem Scheidenvorfall nach einer Hysterektomie aufgrund der schwachen Unterstützung durch laxe apikale Bänder. Es wird angenommen, dass eine verringerte Menge an Östrogen und Progesteron im höheren Alter das Kollagen umformt, wodurch die Gewebesteifigkeit reduziert wird. Die Sakrokolpopexie ist eine offene oder laparoskopische Operation, die mit prothetischen Netzimplantaten durchgeführt wird, um laxe Bänder zu ersetzen. Y-förmige Netzmodelle (DynaMesh, Gynemesh und Ultrapro) werden in einem 3D-Modell des weiblichen Beckenbodens im extraperitonealen Raum vom Vaginalstumpf bis zum Promontorium implantiert. Numerische Simulationen werden während des Valsalva-Manövers mit geschwächtem Gewebe durchgeführt, das durch eine reduzierte Gewebesteifigkeit modelliert wird. Die Gewebe werden als inkompressible, isotrop hyperelastische Materialien modelliert, während die Netze entweder als orthotrope linear elastische oder als isotrope hyperlastische Materialien modelliert werden. Die Positionen des Vaginalstumpfs, der Blase und der Harnröhrenachse werden anhand der Pubococcygeallinie aus der Ruhelage, für den Prolaps und nach der Reparatur unter Verwendung der drei Netze berechnet. Aufgrund der Netzmechanik und der Netzporenverformung bietet das DynaMesh mit regelmäßigen rechteckigen Netzporen eine bessere mechanische Unterstützung und eine Neupositionierung des Scheidengewölbes, der Blase und der Urethraachse als Gynemesh und Ultrapro mit unregelmäßigen hexagonalen Netzporen. Y1 - 2018 U6 - https://doi.org/10.1515/teme-2017-0115 SN - 2196-7113 VL - 85 IS - 5 SP - 331 EP - 342 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Fernandes, P.R. ED - Tavares, J. M. T1 - Pectopexy to repair vaginal vault prolapse: a finite element approach T2 - Proceedings CMBBE 2018 N2 - The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient’s anatomy and the surgeon’s preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes. Y1 - 2018 N1 - 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization. CMBBE 2018. 26-29 March 2018, Lisbon, Portugal ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions JF - Computational and Mathematical Methods in Medicine N2 - After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5%), adipose tissue (85%), and smooth muscle (5%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females. Y1 - 2018 U6 - https://doi.org/10.1155/2018/9518076 SN - 1748-6718 VL - 2018 IS - Article ID 9518076 SP - 1 EP - 16 PB - Hindawi CY - New York, NY ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Computational comparison of different textile implants to correct apical prolapse in females JF - Current Directions in Biomedical Engineering N2 - Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient’s anatomical defect, intended function after reconstruction and most importantly the surgeon’s preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0159 VL - 4 IS - 1 SP - 661 EP - 664 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Birgel, Stefan A1 - Leschinger, Tim A1 - Wegmann, Kilian A1 - Staat, Manfred T1 - Calculation of muscle forces and joint reaction loads in the shoulder area via an OpenSim based computer model JF - tm - Technisches Messen N2 - Using the OpenSim software and verified anatomical data, a computer model for the calculation of biomechanical parameters is developed and used to determine the effect of a reattachment of the Supraspinatus muscle with a medial displacement of the muscle attachment point, which may be necessary for a rupture of the supraspinatus tendon. The results include the influence of the operation on basic biomechanical parameters such as the lever arm, as well as the calculated the muscle activations for the supraspinatus and deltoid. In addition, the influence on joint stability is examined by an analysis of the joint reaction force. The study provides a detailed description of the used model, as well as medical findings to a reattachment of the supraspinatus. Mit der Software OpenSim und überprüften anatomischen Daten wird ein Computermodell zur Berechnung von biomechanischen Parametern entwickelt und genutzt, um den Effekt einer Refixierung des Supraspinatusmuskels mit einer medialen Verschiebung des Muskelansatzpunktes zu ermitteln, wie sie unter anderem nach einem Riss der Supraspinatussehne notwendig sein kann. Die Ergebnisse umfassen hierbei den Einfluss der Operation auf grundlegende biomechanische Parameter wie den Hebelarm sowie die berechneten Muskelaktivierungen für den Supraspinatus und Deltoideus. Zusätzlich wird der Einfluss auf die Gelenkstabilität betrachtet und durch eine Analyse der Gelenkreaktionskraft untersucht. Die Studie bietet eine detaillierte Beschreibung des genutzten Modells, sowie medizinische Erkenntnisse zu einer Refixierung des Supraspinatus. Y1 - 2018 U6 - https://doi.org/10.1515/teme-2017-0114 SN - 2196-7113 VL - 85 IS - 5 SP - 321 EP - 330 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Ciritsis, Alexander A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kuhl, Christiane K. A1 - Kraemer, Nils Andreas T1 - Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo JF - Journal of Biomedical Materials Research: Part B: Applied Biomaterials N2 - Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4% for TPU and of 1.2% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827–833, 2018. Y1 - 2018 U6 - https://doi.org/10.1002/jbm.b.33877 SN - 1552-4981 VL - 106 IS - 2 SP - 827 EP - 833 PB - Wiley CY - New York, NY ER - TY - JOUR A1 - Conzen, Catharina A1 - Albanna, Walid A1 - Weiss, Miriam A1 - Kürten, David A1 - Vilser, Walthard A1 - Kotliar, Konstantin A1 - Zäske, Charlotte A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes JF - Translational Stroke Research N2 - Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5–14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome. Y1 - 2018 U6 - https://doi.org/10.1007/s12975-017-0585-8 SN - 1868-601X IS - 9 SP - 284 EP - 293 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Digel, Ilya A1 - Akimbekov, Nuraly S. A1 - Kistaubayeva, Aida A1 - Zhubanova, Azhar A. ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Microbial Sampling from Dry Surfaces: Current Challenges and Solutions T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms’ recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling. KW - Sampling methods KW - Surface microorganisms KW - Dry surfaces KW - Microbial adhesion KW - Swabbing Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_19 SP - 421 EP - 456 PB - Springer CY - Singapore ER -