TY - JOUR A1 - Digel, Ilya A1 - Akimbekov, Nuraly S. A1 - Turalieva, M. A1 - Mansurov, Z. A1 - Temiz Artmann, Aysegül A1 - Eshibaev, A. A1 - Zhubanova, A. T1 - Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions JF - Journal of Industrial Technology and Engineering Y1 - 2013 VL - 2 IS - 07 SP - 47 EP - 54 ER - TY - CHAP A1 - O\'Heras, Carlos A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - Nanostructured carbon-based column for LPS/protein adsorption : [abstract] N2 - The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS). KW - Kohlenstofffaser KW - Adsorption KW - Lipopolysaccharide KW - aktivierte nanostrukturierte Kohlenstofffaser KW - lipopolysaccharides KW - activated nanostructured carbon Y1 - 2009 ER - TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The emperor's new body : seeking for a blueprint of limb regeneration in humans JF - Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds. Y1 - 2011 SN - 978-3-642-11864-7 SP - 3 EP - 37 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. T1 - Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs) JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 982 EP - 983 ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Linder, Peter A1 - Kayser, Peter A1 - Digel, Ilya T1 - NMR in vitro effects on proliferation, apoptosis, and viability of human chondrocytes and osteoblasts JF - Methods and findings in Experimental and Clinical Pharmacology. 27 (2005), H. 6 Y1 - 2005 SN - 0379-0355 SP - 391 EP - 394 ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Development and testing of a subsurface probe for detection of life in deep ice : [abstract] N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). KW - Eisschicht KW - Sonde KW - subsurface probe KW - subsurface ice research Y1 - 2011 ER - TY - CHAP A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments N2 - A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa’s ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live. KW - Sonde KW - Eisschicht KW - Autofluoreszenzverfahren KW - Lichtstreuungsbasierte Instrumente KW - autofluorescence-based detection system KW - light scattering analysis Y1 - 2009 ER - TY - JOUR A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments Y1 - 2009 N1 - International workshop “Europa lander: science goals and experiments”, Space Research Institute (IKI), Moscow, Russia 9-13 February 2009 SP - 1 EP - 24 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Goßmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM T2 - 1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013 Y1 - 2013 SN - 978-985-553-135-8 SP - 165 EP - 167 PB - Verl. d. Weißruss. Staatl. Univ. CY - Minsk ER - TY - CHAP A1 - Frotscher, Ralf A1 - Goßmann, Matthias A1 - Raatschen, Hans-Jürgen A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM T2 - Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45) N2 - We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments. Y1 - 2015 SN - 978-3-319-02534-6 ; 978-3-319-02535-3 SP - 187 EP - 212 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Frotscher, Ralf A1 - Muanghong, Danita A1 - Dursun, Gözde A1 - Goßmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue JF - Journal of Biomechanics N2 - We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures. KW - hiPS cardiomyocytes KW - Homogenization KW - Hodgkin–Huxley models KW - Frequency adaption KW - Electromechanical modeling KW - Drug simulation KW - Computational biomechanics KW - Cardiac tissue Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2016.01.039 SN - 0021-9290 (Print) SN - 1873-2380 (Online) VL - 49 IS - 12 SP - 2428 EP - 2435 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Artmann, Gerhard A1 - Burns, Laura A1 - Canaves, Jaume M. A1 - Temiz Artmann, Aysegül T1 - Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature JF - European Biophysics Journal. 33 (2004), H. 6 Y1 - 2004 SN - 1432-1017 SP - 490 EP - 496 ER - TY - JOUR A1 - Amin, Rashid A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Lazarovici, Philip A1 - Lelkes, Peter I. T1 - Permeability of an In Vitro Model of Blood Brain Barrier (BBB) JF - 13th International Conference on Biomedical Engineering / Lim, Chwee Teck [Ed.] Y1 - 2009 SN - 978-3-540-92841-6 N1 - IFMBE Proceedings ; 23, Track 1 ; ICBME 2008 3–6 December 2008 Singapore SP - 81 EP - 84 ER - TY - JOUR A1 - Demirci, T. A1 - Trzewik, J. A1 - Linder, Peter A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: Real Time PCR Products and Suppliers by Comparison JF - Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1046 EP - 1047 ER - TY - JOUR A1 - Uysal, Karya A1 - Creutz, Till A1 - Firat, Ipek Seda A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments JF - Polymers N2 - Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3–4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications. Y1 - 2022 SN - 2073-4360 VL - 14 IS - 11 SP - 2213 PB - MDPI CY - Basel ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER - TY - JOUR A1 - Seifarth, Volker A1 - Grosse, Joachim O. A1 - Grossmann, Matthias A1 - Janke, Heinz Peter A1 - Arndt, Patrick A1 - Koch, Sabine A1 - Epple, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation JF - Journal of Biomaterials Applications Y1 - 2017 U6 - https://doi.org/10.1177/0885328217723178 SN - 1530-8022 VL - 32 IS - 3 SP - 321 EP - 330 PB - Sage CY - London ER - TY - JOUR A1 - Seifarth, Volker A1 - Goßmann, Matthias A1 - Grosse, J. O. A1 - Becker, C. A1 - Heschel, I. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds JF - Urologia Internationalis Y1 - 2015 U6 - https://doi.org/10.1159/000368419 SN - 0042-1138 VL - 2015 IS - 95 SP - 106 EP - 113 PB - Karger CY - Basel ER -