TY - BOOK A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül A1 - Zhubanova, Azhar A. A1 - Digel, Ilya ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Biological, physical and technical basics of cell engineering Y1 - 2018 SN - 978-981-10-7903-0 PB - Springer CY - Singapore ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - JOUR A1 - Rittweger, Jörn A1 - Albracht, Kirsten A1 - Flück, Martin A1 - Ruoss, Severin A1 - Brocca, Lorenza A1 - Longa, Emanuela A1 - Moriggi, Manuela A1 - Seynnes, Olivier A1 - Di Giulio, Irene A1 - Tenori, Leonardo A1 - Vignoli, Alessia A1 - Capri, Miriam A1 - Gelfi, Cecilia A1 - Luchinat, Claudio A1 - Franceschi, Claudio A1 - Bottinelli, Roberto A1 - Cerretelli, Paolo A1 - Narici, Marco T1 - Sarcolab pilot study into skeletal muscle’s adaptation to longterm spaceflight JF - npj Microgravity Y1 - 2018 U6 - http://dx.doi.org/10.1038/s41526-018-0052-1 SN - 2373-8065 VL - 4 IS - 1 SP - 1 EP - 9 PB - Nature Portfolio ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Evaluation of passively induced shoulder stretch reflex using an isokinetic dynamometer in male overhead athletes JF - Isokinetics and Exercise Science N2 - BACKGROUND: Muscle stretch reflexes are widely considered to beneficially influence joint stability and power generation in the lower limbs. While in the upper limbs and especially in the muscles surrounding the shoulder joint such evidence is lacking. OBJECTIVE: To quantify the electromyographical response in the muscles crossing the shoulder of specifically trained overhead athletes to an anterior perturbation force. METHODS: Twenty healthy male participants performed six sets of different external shoulder rotation stretches on an isokinetic dynamometer over a range of amplitudes and muscle pre-activation moment levels. All stretches were applied with a dynamometer acceleration of 10,000∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexes were not observed in all experimental conditions. The reflex latencies revealed a significant muscle main effect (F (2,228) = 99.31, p< 0.001; η2= 0.466; f= 0.934) and a pre-activation main effect (F (1,228) = 142.21, p< 0.001; η2= 0.384; f= 1.418). The stretch reflex amplitude yielded a significant pre-activation main effect (F (1,222) = 470.373, p< 0.001; η2= 0.679; f= 1.454). CONCLUSION: Short latency muscle reflexes showed a tendency to an anterior to posterior muscle recruitment whereby the main internal rotator muscles of the shoulder revealed the most consistent results. Y1 - 2018 U6 - http://dx.doi.org/10.3233/IES-184111 SN - 1878-5913 VL - 26 IS - 4 SP - 265 EP - 274 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Foitschik, Tina A1 - Rojas-Vega, Sandra A1 - Strüder, Heiko K. T1 - Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects JF - Sports Engineereing N2 - In Paralympic sports, biomechanical optimisation of movements and equipment seems to be promising for improving performance. In handcycling, information about the biomechanics of this sport is mainly provided by case studies. The aim of the current study was (1) to examine changes in handcycling propulsion kinematics and kinetics due to increasing workloads and (2) identify parameters that are associated with peak aerobic performance. Twelve non-disabled male competitive triathletes without handcycling experience voluntarily participated in the study. They performed an initial familiarisation protocol and incremental step test until exhaustion in a recumbent racing handcycle that was attached to an ergometer. During the incremental test, tangential crank kinetics, 3D joint kinematics, blood lactate and ratings of perceived exertion (local and global) were identified. As a performance criterion, the maximal power output during the step test (Pmax) was calculated and correlated with biomechanical parameters. For higher workloads, an increase in crank torque was observed that was even more pronounced in the pull phase than in the push phase. Furthermore, participants showed an increase in shoulder internal rotation and abduction and a decrease in elbow flexion and retroversion. These changes were negatively correlated with performance. At high workloads, it seems that power output is more limited by the transition from pull to push phase than at low workloads. It is suggested that successful athletes demonstrate small alterations of their kinematic profile due to increasing workloads. Future studies should replicate and expand the test spectrum (sprint and continuous loads) as well as use methods like surface electromyography (sEMG) with elite handcyclists. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s12283-018-0269-y SN - 1460-2687 VL - 21 IS - 21 SP - 283 EP - 294 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Ketelhut, Maike A1 - Göll, Fabian A1 - Braunstein, Björn A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Comparison of different training algorithms for the leg extension training with an industrial robot JF - Current Directions in Biomedical Engineering N2 - In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot’s acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption. KW - Rehabilitation Technology and Prosthetics KW - Surgical Navigation and Robotics Y1 - 2018 U6 - http://dx.doi.org/10.1515/cdbme-2018-0005 SN - 2364-5504 VL - 4 IS - 1 SP - 17 EP - 20 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J A1 - Paulsen, Gøran A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R T1 - Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing JF - Frontiers in physiology N2 - During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation. KW - achilles tendon KW - energy absorption KW - energy dissipation KW - mechanical buffer KW - stiffness Y1 - 2018 U6 - http://dx.doi.org/10.3389/fphys.2018.00794 SN - 1664-042X IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Lapitan, Denis G. A1 - Rogatkin, Dmitrii A. A1 - Persheyev, Sydulla K. A1 - Kotliar, Konstantin T1 - False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter JF - Biomedizinische Technik N2 - Noise in the differential two-channel scheme of a classic laser Doppler flowmetry (LDF) instrument was studied. Formation of false spectral components in the output signal due to beating of electrical signals in the differential amplifier was found out. The improved block-diagram of the flowmeter was developed allowing to reduce the noise. Y1 - 2018 U6 - http://dx.doi.org/10.1515/bmt-2017-0060 SN - 0013-5585 VL - 63 IS - 4 SP - 439 EP - 444 PB - De Gruyter CY - Berlin ER -