TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Saklamaz, Ali A1 - Comlekci, Abdurrahman A1 - Caliskan, Sezer T1 - The beneficial effects of lipid-lowering drugs beyond lipid-lowering effects: A comparative study with pravastatin, atorvastatin, and fenofibrate in patients with type IIa and type IIb hyperlipidemia / Saklamaz, Ali ; Comlekci, Abdurrahman ; Temiz, Aysegu JF - Metabolism. 54 (2005), H. 5 Y1 - 2005 SN - 0026-0495 SP - 677 EP - 681 ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Koshitz, I. N. A1 - Svetlowa, O. V. A1 - Makarov, F. N. T1 - Biomechanical analysis of traditional and contemporary conceptions on pathogenesis of the primary open angle glaucoma / Koshitz, I. N. ; Svetlova, O. V. ; Kotliar, K. E. ; Makarov, F. N. ; Smolnikov, B. A. JF - Glaukoma (2005) Y1 - 2005 N1 - Original in Russisch SP - 41 EP - 63 PB - - ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. A1 - Cook, M. T1 - Bactericidal effects of plasma-generated cluster ions JF - Medical and Biological Engineering and Computing. 43 (2005), H. 6 Y1 - 2005 SN - 1741-0444 SP - 800 EP - 807 ER - TY - JOUR A1 - Maggakis-Kelemen, Christina A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Polystyrene sulfonate/Polyallylamine hydrochloride microcapsules as potential artificial red blood cells - improvement of capsule flexibility JF - Biomedizinische Technik. 50 (2005), H. Erg.-Bd. 1 Y1 - 2005 SP - 324 EP - 326 ER - TY - JOUR A1 - Staat, Manfred T1 - Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels N2 - Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions. KW - Finite-Elemente-Methode KW - Grenzwertberechnung KW - Axialbelastung KW - FEM KW - Grenzwertberechnung KW - Axialbelastung KW - Traglastanalyse KW - Limit analysis KW - Global and local collapse KW - Axially cracked pipe KW - Pressure loaded crack-face Y1 - 2005 ER - TY - JOUR A1 - Staat, Manfred T1 - Direct finite element route for design-by-analysis of pressure components N2 - In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion. KW - Einspielen KW - Plastizität KW - Deformation KW - Analytischer Zulaessigkeitsnachweis KW - Einspiel-Analyse KW - fortschreitende plastische Deformation KW - alternierend Verformbarkeit KW - Einspiel-Kriterium KW - Design-by-analysis KW - Shakedown analysis KW - Progressive plastic deformation KW - Alternating plasticity KW - Shakedown criterion Y1 - 2005 ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of very-low-thrust trajectories using evolutionary neurocontrol JF - Acta Astronautica N2 - Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric). Y1 - 2005 SN - 1879-2030 VL - 57 IS - 2-8 SP - 175 EP - 185 PB - Elsevier CY - Amsterdam [u.a.] ER -