TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Computational comparison of different textile implants to correct apical prolapse in females JF - Current Directions in Biomedical Engineering N2 - Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient’s anatomical defect, intended function after reconstruction and most importantly the surgeon’s preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0159 VL - 4 IS - 1 SP - 661 EP - 664 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Horbach, Andreas A1 - Staat, Manfred T1 - Optical strain measurement for the modeling of surgical meshes and their porosity JF - Current Directions in Biomedical Engineering N2 - The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0045 SN - 2364-5504 VL - Band 4 IS - 1 SP - 181 EP - 184 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - JOUR A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple near-earth asteroid rendezvous mission: Solar-sailing options JF - Advances in Space Research Y1 - 2017 U6 - https://doi.org/10.1016/j.asr.2017.10.017 SN - 0273-1177 IS - In Press, Corrected Proof PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Ulamec, Stephan A1 - Ziach, Christian A1 - Spröwitz, Tom A1 - Ruffer, Michael A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Toth, Norbert A1 - Mimasu, Yuya A1 - Rittweger, Andreas A1 - Bibring, Jean-Pierre A1 - Braukhane, Andy A1 - Boden, Ralf Christian A1 - Dumont, Etienne A1 - Jahnke, Stephan Siegfried A1 - Jetzschmann, Michael A1 - Krüger, Hans A1 - Lange, Michael A1 - Gomez, Antonio Martelo A1 - Massonett, Didier A1 - Okada, Tatsuaki A1 - Sagliano, Marco A1 - Sasaki, Kaname A1 - Schröder, Silvio A1 - Sippel, Martin A1 - Skoczylas, Thomas A1 - Wejmo, Elisabet T1 - Small landers and separable sub-spacecraft for near-term solar sails T2 - The Fourth International Symposium on Solar Sailing 2017 N2 - Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages. KW - Small Solar System Body Lander KW - Small Spacecraft KW - PHILAE KW - MASCOT KW - Solar Power Sail Y1 - 2017 N1 - The Fourth International Symposium on Solar Sailing 2017, 17-20 January 2017. Kyoto Research Park, Kyoto, Japan SP - 1 EP - 10 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Meß, Jan-Gerd A1 - Biele, Jens A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Spietz, Peter A1 - Grimm, Christian D. A1 - Spröwitz, Tom A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft in small solar system body applications T2 - IEEE Aerospace Conference 2017, Big Sky, Montana, USA Y1 - 2017 SN - 978-1-5090-1613-6 U6 - https://doi.org/10.1109/AERO.2017.7943626 SP - 1 EP - 20 ER - TY - CHAP A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple NEA rendezvous mission: Solar sailing options T2 - Fourth International Symposium on Solar Sailing N2 - The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user. KW - Multiphase KW - Trajectory Optimization KW - Automated Optimization KW - Gossamer KW - Sequence-Search Y1 - 2017 N1 - Fourth International Symposium on Solar Sailing (ISSS 2017), Kyoto, Japan, 17-20 Jan 2017. http://www.jsforum.or.jp/ISSS2017/ SP - 1 EP - 11 ER - TY - CHAP A1 - Tran, N. T. A1 - Tran, Thanh Ngoc A1 - Matthies, M. G. A1 - Stavroulakis, G. E. A1 - Staat, Manfred T1 - Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming T2 - Advances in Direct Methods for Materials and Structures N2 - In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis. Y1 - 2017 SN - 978-3-319-59810-9 U6 - https://doi.org/10.1007/978-3-319-59810-9_6 SP - 85 EP - 103 PB - Springer CY - Cham ER - TY - JOUR A1 - Hackl, Michael A1 - Wegmann, Kilian A1 - Kahmann, Stephanie Lucina A1 - Heinze, Nicolai A1 - Staat, Manfred A1 - Neiss, Wolfram F. A1 - Scaal, Martin A1 - Müller, Lars P. T1 - Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow JF - Knee Surgery, Sports Traumatology, Arthroscopy Y1 - 2017 U6 - https://doi.org/10.1007/s00167-017-4468-z SN - 1433-7347 VL - 25 IS - 7 SP - 2280 EP - 2288 PB - Springer CY - Berlin ER -