TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Schneider, Oliver A1 - Al Hakim, Taher A1 - Kayser, Peter A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 96 EP - 97 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple near-earth asteroid rendezvous mission: Solar-sailing options JF - Advances in Space Research Y1 - 2017 U6 - https://doi.org/10.1016/j.asr.2017.10.017 SN - 0273-1177 IS - In Press, Corrected Proof PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - SEP-Sample return from a main belt asteroid T2 - 30th International Electric Propulsion Conference N2 - By DLR-contact, sample return missions to the large main-belt asteroid “19, Fortuna” have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP. Y1 - 2007 SP - 1 EP - 11 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz T1 - Main Belt Asteroid Sample Return Mission Using Solar Electric Propulsion JF - Acta Astronautica. 63 (2008), H. 1-4 Y1 - 2008 SN - 0094-5765 N1 - International Astronautical Federation Congress <58, 2007, Hyderabad> ; International Astronautical Congress <58, 2007, Hyderabad> ; IAC-07-A3.5.07 SP - 91 EP - 101 ER - TY - JOUR A1 - Kezerashvili, Roman Ya A1 - Dachwald, Bernd T1 - Preface: Solar sailing: Concepts, technology, and missions II JF - Advances in Space Research Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2021.01.037 SN - 0273-1177 VL - 67 IS - 9 SP - 2559 EP - 2560 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Spurmann, J. A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang T1 - Mission design for a SEP mission to saturn T2 - 60th International Astronautical Congress 2009 (IAC 2009) N2 - Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system. Y1 - 2009 SN - 978-1-61567-908-9 N1 - 12-16 October 2009, Daejeon, Republic of Korea. PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - JOUR A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Seefeldt, Patric A1 - Grundmann, Jan Thimo A1 - Jahnke, Rico A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Macdonald, Malcolm A1 - McInnes, Colin A1 - Seboldt, Wolfgang A1 - Quantius, Dominik A1 - Bauer, Waldemar A1 - Wiedemann, Carsten A1 - Grimm, Christian D. A1 - Hercik, David A1 - Ho, Tra-Mi A1 - Lange, Caroline A1 - Schmitz, Nicole T1 - Paths not taken – The Gossamer roadmap’s other options JF - Advances in Space Research KW - Solar sail KW - Small spacecraft KW - DLR-ESTEC GOSSAMER roadmap for solar sailing KW - GOSSAMER-1 Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2021.01.044 SN - 0273-1177 VL - 67 IS - 9 SP - 2912 EP - 2956 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Design concept and modeling of an advanced solar photon thruster T2 - Advances in the Astronautical Sciences N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail. KW - solar sails Y1 - 2009 SN - 978-087703554-1 SN - 00653438 N1 - 19th AAS/AIAA Space Flight Mechanics Meeting; Savannah, GA; United States; 8 February 2009 through 12 February 2009 SP - 723 EP - 740 PB - American Astronautical Society CY - San Diego, Calif. ER - TY - JOUR A1 - Dachwald, Bernd A1 - Baturkin, Volodymyr A1 - Coverstone, Victoria L. A1 - Dietrich, Benjamin A1 - Garbe, Gregory P. A1 - Görlich, Marianne A1 - Leipold, Manfred A1 - Lura, Franz A1 - Macdonald, Malcolm A1 - McInnes, Colin R. A1 - Mengali, Giovanni A1 - Quatra, Alessandro A. A1 - Rios-Reyes, Leonel A1 - Scheeres, Daniel J. A1 - Seboldt, Wolfgang A1 - Wie, Bong T1 - Potential Effects of Optical Solar Sail Degradation on Interplanetary Trajectory Design JF - Astrodynamics 2005 : proceedings of the AAS/AIAA astrodynamics conference held August 7 - 11, 2005, South Lake Tahoe, California / ed. by Bobby G. Williams. - Pt. 3. - (Advances in the astronautical sciences ; 123,3) Y1 - 2006 UR - http://www.spacesailing.net/paper/200508_LakeTahoe_Dachwald+.pdf SN - 0-87703-527-X N1 - Astrodynamics Conference <2005, South Lake Tahoe, Calif.> ; American Astronautical Society ; Number: AAS-05-413 SP - 2569 EP - 2592 PB - Univelt CY - San Diego, Calif. ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Richter, L. T1 - Multiple rendezvous and sample return missions to near-Earth objects using solar sailcraft / Dachwald, B. ; Seboldt, W. ; Richter, L. JF - Acta Astronautica. 59 (2006), H. 8-11 Y1 - 2006 SN - 0094-5765 N1 - International Conference on Low Cost Planetary Missions <5, 2003, Noordwijk> ; Selected Proceedings SP - 768 EP - 776 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Ulamec, Stephan A1 - Ziach, Christian A1 - Spröwitz, Tom A1 - Ruffer, Michael A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Toth, Norbert A1 - Mimasu, Yuya A1 - Rittweger, Andreas A1 - Bibring, Jean-Pierre A1 - Braukhane, Andy A1 - Boden, Ralf Christian A1 - Dumont, Etienne A1 - Jahnke, Stephan Siegfried A1 - Jetzschmann, Michael A1 - Krüger, Hans A1 - Lange, Michael A1 - Gomez, Antonio Martelo A1 - Massonett, Didier A1 - Okada, Tatsuaki A1 - Sagliano, Marco A1 - Sasaki, Kaname A1 - Schröder, Silvio A1 - Sippel, Martin A1 - Skoczylas, Thomas A1 - Wejmo, Elisabet T1 - Small landers and separable sub-spacecraft for near-term solar sails T2 - The Fourth International Symposium on Solar Sailing 2017 N2 - Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages. KW - Small Solar System Body Lander KW - Small Spacecraft KW - PHILAE KW - MASCOT KW - Solar Power Sail Y1 - 2017 N1 - The Fourth International Symposium on Solar Sailing 2017, 17-20 January 2017. Kyoto Research Park, Kyoto, Japan SP - 1 EP - 10 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Heiligers, Jeannette A1 - Herčík, David A1 - Hérique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin A1 - Meß, Jan-Gerd A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wiedemann, Carsten A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Flights are ten a sail – Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration T2 - 70th International Astronautical Congress (IAC) KW - system engineering KW - small solar system body characterisation KW - small spacecraft solar sail KW - small spacecraft asteroid lander KW - responsive space Y1 - 2019 SN - 9781713814856 N1 - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019 SP - 1 EP - 7 ER - TY - JOUR A1 - Dachwald, Bernd T1 - Evolutionary Neurocontrol: A Smart Method for Global Optimization of Low-Thrust Trajectories JF - 22nd AIAA Applied Aerodynamics Conference and Exhibit - AIAA/AAS Astrodynamics Specialist Conference and Exhibit - AIAA Guidance, Navigation, and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : 16 - 19 August 2004, Providence, Rhode Island / American Institute of Aeronautics and Astronautics. - (AIAA meeting papers on disc ; 2004,14-15) Y1 - 2004 N1 - American Institute of Aeronautics and Astronautics ; AIAA/AAS Astrodynamics Specialist Conference and Exhibit <2004, Providence, RI> ; AIAA paper number: AIAA-2004-5405 PB - American Inst. of Aeronautics and Astronautics CY - Reston, Va. ER - TY - JOUR A1 - Heiligers, Jeannette A1 - Schoutetens, Frederic A1 - Dachwald, Bernd T1 - Photon-sail equilibria in the alpha centauri system JF - Journal of Guidance, Control, and Dynamics Y1 - 2021 U6 - https://doi.org/10.2514/1.G005446 SN - 1533-3884 SN - 0731-5090 SN - 0162-3192 VL - 44 IS - 5 SP - 1053 EP - 1061 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive integrated small spacecraft solar sail and payload design concepts and missions T2 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019) N2 - Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth’s deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling. Y1 - 2019 N1 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019)At: Aachen, Germany ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Meß, Jan-Gerd A1 - Biele, Jens A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Spietz, Peter A1 - Grimm, Christian D. A1 - Spröwitz, Tom A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft in small solar system body applications T2 - IEEE Aerospace Conference 2017, Big Sky, Montana, USA Y1 - 2017 SN - 978-1-5090-1613-6 U6 - https://doi.org/10.1109/AERO.2017.7943626 SP - 1 EP - 20 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Borella, Laura A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Fexer, Sebastian A1 - Grimm, Christian D. A1 - Hendrikse, Jeffrey A1 - Herčík, David A1 - Herique, Alain A1 - Hillebrandt, Martin A1 - Ho, Tra-Mi A1 - Kesseler, Lars A1 - Laabs, Martin A1 - Lange, Caroline A1 - Lange, Michael A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Moore, Iain A1 - Peloni, Alessandro A1 - Plettenmeier, Dirk A1 - Quantius, Dominik A1 - Seefeldt, Patric A1 - Venditti, Flaviane c. F. A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Virkki, Anne K. A1 - Zander, Martin T1 - More bucks for the bang: new space solutions, impact tourism and one unique science & engineering opportunity at T-6 months and counting T2 - 7th IAA Planetary Defense Conference N2 - For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly – they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy – or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science. Y1 - 2021 N1 - 7th IAA Planetary Defense Conference, Vienna, Austria, 26-30 April 2021 ER - TY - JOUR A1 - Grundmann, Jan Thimo A1 - Dachwald, Bernd A1 - Grimm, Christian D. A1 - Kahle, Ralph A1 - Koch, Aaron Dexter A1 - Krause, Christian A1 - Lange, Caroline A1 - Quantius, Dominik A1 - Ulamec, Stephan T1 - Spacecraft for Hypervelocity Impact Research – An Overview of Capabilities, Constraints and the Challenges of Getting There JF - Procedia Engineering Y1 - 2015 U6 - https://doi.org/10.1016/j.proeng.2015.04.021 SN - 1877-7058 N1 - Proceedings of the 2015 Hypervelocity Impact Symposium (HVIS 2015) VL - Vol. 103 SP - 151 EP - 158 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Wlademar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D. A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Meß, Jan-Gerd A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Ceriotti, Matteo A1 - McInnes, Colin A1 - Peloni, Alessandro A1 - Biele, Jens A1 - Krause, Christian A1 - Dachwald, Bernd A1 - Hercik, David A1 - Lichtenheldt, Roy A1 - Wolff, Friederike A1 - Koncz, Alexander A1 - Pelivan, Ivanka A1 - Schmitz, Nicole A1 - Boden, Ralf A1 - Riemann, Johannes A1 - Seboldt, Wolfgang A1 - Wejmo, Elisabet A1 - Ziach, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Ruffer, Michael A1 - Cordero, Federico A1 - Tardivel, Simon T1 - Solar sails for planetary defense & high-energy missions T2 - IEEE Aerospace Conference Proceedings N2 - 20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection. Y1 - 2019 U6 - https://doi.org/10.1109/AERO.2019.8741900 N1 - AERO 2019; Big Sky; United States; 2 March 2019 through 9 March 2019 SP - 1 EP - 21 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Lange, Caroline A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Koch, Aaron A1 - Ulamec, Stephan T1 - Small Spacecraft in Planetary Defence Related Applications–Capabilities, Constraints, Challenges T2 - IEEE Aerospace Conference N2 - In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA’s ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos. KW - small spacecraft KW - planetary defence KW - asteroid lander KW - solar sail KW - flotilla missions Y1 - 2015 N1 - 2015 IEEE Aerospace Conference, 7.-13. Mar. 2015, Big Sky, Montana, USA. SP - 1 EP - 18 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mengali, Giovanni A1 - Quarta, Alessandro A. A1 - Circi, Christian T1 - Refined Solar Sail Force Model with Mission Application / Giovanni Mengali ; Alessandro A. Quarta , Christian Circi ; Bernd Dachwald JF - Journal of Guidance, Control, and Dynamics. 30 (2007), H. 2 Y1 - 2007 SN - 0162-3192 N1 - 2. ISBN: 0731-5090 SP - 512 EP - 520 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Wie, Bong T1 - Solar Sail Trajectory Optimization for the Solar Polar Imager (SPI) Mission JF - AIAA Guidance, Navigation, and Control Conference & Exhibit - AIAA Atmospheric Flight Mechanics Conference & Exhibit - AIAA Modeling and Simulation Technologies Conference & Exhibit - AIAA/AAS Astrodynamics Specialist Conference & Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 ) Y1 - 2006 SN - 1-56347-802-1 N1 - American Institute of Aeronautics and Astronautics ; American Astronautical Society ; AIAA/AAS Astrodynamics Specialist Conference & Exhibit <2006, Keystone, Colo.> ; AIAA paper number: AIAA-2006-6177 PB - American Institute of Aeronautics and Astronautics CY - Reston, Va. ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mengali, Giovanni A1 - Quarta, Alessandro A A1 - Macdonald, Malcolm A1 - McInnes, Colin R T1 - Optical solar sail degradation modelling T2 - 1st International Symposium on Solar Sailing N2 - We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Y1 - 2007 N1 - 1st International Symposium on Solar Sailing 27–29 June 2007, Herrsching, Germany SP - 1 EP - 27 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Schmidt, Tanja D. A1 - Seboldt, Wolfgang A1 - Auweter-Kurtz, T1 - Flight Opportunities from Mars to Earth for Piloted Missions Using Continuous Thrust Propulsion / Schmidt, Tanja D. ; Dachwald, Bernd ; Seboldt, Wolfgang ; Auweter-Kurtz, Monika Y1 - 2003 N1 - 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 20-23 July 2003, Huntsville, Alabama ; AIAA 2003-4573 SP - 1 EP - 9 PB - - ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Lingam, Manasvi A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd A1 - Kervella, Pierre T1 - Interstellar Now! Missions to and sample returns from nearby interstellar objects N2 - The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. Y1 - 2020 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Campen, R. A1 - Kowalski, Julia A1 - Lyons, W.B. A1 - Tulaczyk, S. A1 - Dachwald, Bernd A1 - Pettit, E. A1 - Welch, K. A. A1 - Mikucki, J.A. T1 - Microbial diversity of an Antarctic subglacial community and high‐resolution replicate sampling inform hydrological connectivity in a polar desert JF - Environmental Microbiology Y1 - 2019 U6 - https://doi.org/10.1111/1462-2920.14607 SN - 1462-2920 IS - accepted article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Multiple Near-Earth Asteroid Rendezvous and Sample Return Using First Generation Solar Sailcraft JF - Acta Astronautica. 57 (2005), H. 11 Y1 - 2005 SN - 0094-5765 SP - 864 EP - 875 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Boehnhardt, Herrmann A1 - Broj, Ulrich A1 - Geppert, Ulrich R. M. E. A1 - Grundmann, Jan-Thimo A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Johnson, Les A1 - Kührt, Ekkehard A1 - Mottola, Stefano A1 - Macdonald, Malcolm A1 - McInnes, Colin R. A1 - Vasile, Massimiliano A1 - Reinhard, Ruedeger T1 - Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission T2 - Advances in solar sailing N2 - A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented. Y1 - 2014 SN - 978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book) SP - 211 EP - 226 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Peloni, Alessandro A1 - Dachwald, Bernd A1 - Ceriotti, Matteo T1 - Multiple NEA rendezvous mission: Solar sailing options T2 - Fourth International Symposium on Solar Sailing N2 - The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user. KW - Multiphase KW - Trajectory Optimization KW - Automated Optimization KW - Gossamer KW - Sequence-Search Y1 - 2017 N1 - Fourth International Symposium on Solar Sailing (ISSS 2017), Kyoto, Japan, 17-20 Jan 2017. http://www.jsforum.or.jp/ISSS2017/ SP - 1 EP - 11 ER - TY - JOUR A1 - Schael, S. A1 - Atanasyan, A. A1 - Berdugo, J. A1 - Bretz, T. A1 - Czupalla, Markus A1 - Dachwald, Bernd A1 - Doetinchem, P. von A1 - Duranti, M. A1 - Gast, H. A1 - Karpinski, W. A1 - Kirn, T. A1 - Lübelsmeyer, K. A1 - Maña, C. A1 - Marrocchesi, P.S. A1 - Mertsch, P. A1 - Moskalenko, I.V. A1 - Schervan, T. A1 - Schluse, M. A1 - Schröder, K.-U. A1 - Schultz von Dratzig, A. A1 - Senatore, C. A1 - Spies, L. A1 - Wakely, S.P. A1 - Wlochal, M. A1 - Uglietti, D. A1 - Zimmermann, J. T1 - AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2 JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Y1 - 2019 U6 - https://doi.org/10.1016/j.nima.2019.162561 SN - 0168-9002 VL - 944 IS - 162561 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Solar sailcraft of the first generation mission applications to near-earth asteroids Y1 - 2003 N1 - 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law 29 September - 3 October 2003, Bremen, Germany IAC-03-Q.5.06 ER - TY - CHAP A1 - Konstantinidis, K. A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Dykta, P. A1 - Voigt, K. A1 - Förstner, R. T1 - Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life T2 - 64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2) Y1 - 2013 SN - 978-1-62993-909-4 SP - 1340 EP - 1350 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Dachwald, Bernd A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Konstantinidis, K. A1 - Forstner, R. T1 - Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice T2 - 63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3) Y1 - 2012 SN - 978-1-62276-979-7 SP - 1756 EP - 1766 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Hallmann, Marcus A1 - Heidecker, Ansgar A1 - Schlotterer, Markus A1 - Dachwald, Bernd T1 - GTOC8: results and methods of team 15 DLR T2 - 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA N2 - This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge. Y1 - 2016 N1 - 26th AAS/AIAA Space Flight Mechanics Meeting, February 14-18, 2016, Napa, California, U.S.A. Napa, CA ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of very-low-thrust trajectories using evolutionary neurocontrol JF - Acta Astronautica N2 - Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric). Y1 - 2005 SN - 1879-2030 VL - 57 IS - 2-8 SP - 175 EP - 185 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - CHAP A1 - Spurmann, Jörn A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Löb, Horst A1 - Schartner, Karl-Heinz T1 - Interplanetary trajectory optimization for a sep mission to Saturn T2 - 60th International Astronautical Congress 2009 N2 - The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general. KW - Spacecraft KW - Reusable Rocket Engines KW - Hybrid Propellants Y1 - 2009 SN - 9781615679089 N1 - 60th International Astronautical Congress 2009 (IAC 2009) Held 12-16 October 2009, Daejeon, Republic of Korea. SP - 5234 EP - 5248 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Carnelli, I. A1 - Vasile, M. T1 - Optimizing low-thrust gravity assist interplanetary trajectories using evolutionary neurocontrollers / I. Carnelli ; B. Dachwald ; M. Vasile JF - IEEE Congress on Evolutionary Computation, 2007 : CEC 2007 ; 25 - 28 September 2007, Singapore Y1 - 2007 SN - 978-1-424-41339-3 N1 - ISBN 10: 1-424-41339-7 ; IEEE Congress on Evolutionary Computation <2007, Singapore> ; Institute of Electrical and Electronics Engineers ; Nebent: CEC 2007 ; Parallel als Online-Ausg. erschienen SP - 965 EP - 972 PB - IEEE Service Center CY - Piscataway, NJ ER - TY - CHAP A1 - Macdonald, Malcolm A1 - McGrath, C. A1 - Appourchaux, T. A1 - Dachwald, Bernd A1 - Finsterle, W. A1 - Gizon, L. A1 - Liewer, P. C. A1 - McInnes, Colin R. A1 - Mengali, G. A1 - Seboldt, Wolfgang A1 - Sekii, T. A1 - Solanki, S. K. A1 - Velli, M. A1 - Wimmer-Schweingruber, R. F. A1 - Spietz, Peter A1 - Reinhard, Ruedeger ED - Macdonald, Malcolm T1 - Gossamer roadmap technology reference study for a solar polar mission T2 - Advances in solar sailing N2 - A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100–125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass. Y1 - 2014 SN - 978-3-642-34906-5 U6 - https://doi.org/10.1007/978-3-642-34907-2_17 SP - 243 EP - 257 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Dachwald, Bernd A1 - McDonald, Malcolm A1 - McInnes, Colin R. A1 - Mengali, Giovanni T1 - Impact of Optical Degradation on Solar Sail Mission Performance JF - Journal of Spacecraft and Rockets. 44 (2007), H. 4 Y1 - 2007 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 740 EP - 749 ER - TY - CHAP A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Schartner, Karl-Heinz T1 - Flight times to the heliopause using a combination of solar and radioisotope electric propulsion T2 - 32nd International Electric Propulsion Conference N2 - We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks’ parameter set. Based on a parameter space study, in which the number of thrust units, the unit’s specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere’s “nose". KW - low-thrust trajectory optimization KW - heliosphere KW - ion propulsion Y1 - 2011 N1 - IEPC-2011-051 32nd International Electric Propulsion Conference,September 11–15, 2011 Wiesbaden, Germany SP - 1 EP - 12 ER - TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit T2 - 25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany Y1 - 2015 ER - TY - CHAP A1 - Jean-Pierre P., de Vera A1 - Baque, Mickael A1 - Billi, Daniela A1 - Böttger, Ute A1 - Bulat, Sergey A1 - Czupalla, Markus A1 - Dachwald, Bernd A1 - de la Torre, Rosa A1 - Elsaesser, Andreas A1 - Foucher, Frédéric A1 - Korsitzky, Hartmut A1 - Kozyrovska, Natalia A1 - Läufer, Andreas A1 - Moeller, Ralf A1 - Olsson-Francis, Karen A1 - Onofri, Silvano A1 - Sommer, Stefan A1 - Wagner, Dirk A1 - Westall, Frances T1 - The search for life on Mars and in the Solar System - strategies, logistics and infrastructures T2 - 69th International Astronautical Congress (IAC) N2 - The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions. KW - life detection KW - Mars KW - icy moons KW - habitability KW - space missions Y1 - 2018 N1 - 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. SP - 1 EP - 8 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Wi, Bong T1 - Solar Sail Kinetic Energy Impactor Trajectory Optimization for an Asteroid-Deflection Mission JF - Journal of Spacecraft and Rockets. 44 (2007), H. 4 Y1 - 2007 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 755 EP - 764 ER - TY - JOUR A1 - Dachwald, Bernd T1 - Minimum Transfer Times for Nonperfectly Reflecting Solar Sailcraft JF - Journal of Spacecraft and Rockets. 41 (2004), H. 4 Y1 - 2004 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 693 EP - 695 ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of Interplanetary Solar Sailcraft Trajectories Using Evolutionary Neurocontrol JF - Journal of guidance, control, and dynamics. 27 (2004), H. 1 Y1 - 2004 SN - 0162-3192 N1 - 2. ISSN: 0162-3192. - 3. ISSN: 0731-5090 SP - 66 EP - 72 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Gill, E. T1 - Optimization of low-thrust Earth-Moon transfers using evolutionary neurocontrol / Ohndorf, A. ; Dachwald, B. ; Gill, E. JF - IEEE Congress on Evolutionary Computation, 2009. CEC '09. Y1 - 2009 SN - 978-1-4244-2958-5 SP - 358 EP - 364 ER - TY - JOUR A1 - Scholz, Christina A1 - Romagnoli, Daniele A1 - Dachwald, Bernd A1 - Theil, Stephan T1 - Performance analysis of an attitude control system for solar sails using sliding masses JF - Advances in Space Research Y1 - 2011 SN - 0273-1177 VL - 48 IS - 11 SP - 1822 EP - 1835 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Leipold, M. A1 - Fichtner, H. A1 - Heber, B. A1 - Groepper, P. A1 - Lascar, S. A1 - Burger, F. A1 - Eiden, M. A1 - Niederstadt, T. A1 - Sickinger, C. A1 - Herbeck, L. A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System JF - Acta Astronautica. 59 (2006), H. 8-11 Y1 - 2006 SN - 0094-5765 N1 - International Conference on Low Cost Planetary Missions <5, 2003, Noordwijk> ; Selected Proceedings SP - 786 EP - 796 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Turyshev, Slava G. A1 - Dittus, H. A1 - Shao, M. [u.a.] T1 - Fundamental Physics with the Laser Astrometric Test Of Relativity / S.G. Turyshev ; H. Dittus ; M. Shao ... B.Dachwald ... JF - Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588) Y1 - 2005 SN - 9290928999 N1 - ISBN der CD-ROM-Ausg.: 9290928999 ; Symposium Trends in Space Science and Cosmic Vision 2020 <2005, Noordwijk> ; ESLAB symposium <39, 2005, Noordwijk> ; European Space Laboratory SP - 8 EP - 11 PB - ESA Publ. Div. CY - Noordwijk ER -