TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. A1 - Cook, M. T1 - Bactericidal effects of plasma-generated cluster ions JF - Medical and Biological Engineering and Computing. 43 (2005), H. 6 Y1 - 2005 SN - 1741-0444 SP - 800 EP - 807 ER - TY - JOUR A1 - Digel, Ilya A1 - Trzewik, Jürgen A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül T1 - Response of fibroblasts to cyclic mechanical stress : a proteome approach / Digel, I. ; Trzewik, J. ; Demirci, T. ; Temiz Artmann, A. ; Artmann, G. M. JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1042 EP - 1043 ER - TY - JOUR A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. T1 - Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs) JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 982 EP - 983 ER - TY - JOUR A1 - Digel, Ilya A1 - Akimbekov, N. A1 - Turalieva, M. A1 - Mansurov, Z. A1 - Temiz Artmann, Aysegül A1 - Eshibaev, A. A1 - Zhubanova, A. T1 - Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions JF - Journal of Industrial Technology and Engineering Y1 - 2013 VL - 2 IS - 07 SP - 47 EP - 54 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Development and testing of a subsurface probe for detection of life in deep ice : [abstract] N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). KW - Eisschicht KW - Sonde KW - subsurface probe KW - subsurface ice research Y1 - 2011 ER - TY - CHAP A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments N2 - A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa’s ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live. KW - Sonde KW - Eisschicht KW - Autofluoreszenzverfahren KW - Lichtstreuungsbasierte Instrumente KW - autofluorescence-based detection system KW - light scattering analysis Y1 - 2009 ER - TY - JOUR A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments Y1 - 2009 N1 - International workshop “Europa lander: science goals and experiments”, Space Research Institute (IKI), Moscow, Russia 9-13 February 2009 SP - 1 EP - 24 ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Xu, Changsheng T1 - IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems N2 - The ”IceMole“ is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences’ Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe’s potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology. KW - Eisschicht KW - Sonde KW - subsurface ice KW - subglacial aquatic ecosystems Y1 - 2012 ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER -