TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022 N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - http://dx.doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - Third European Conference on Earthquake Engineering and Seismology. 04-09.09 Bucharest, Romania. SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Mistler, M. A1 - Butenweg, Christoph A1 - Anthoine, A. T1 - Evaluation of the failure criterion for masonry by homogenisation T2 - Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping and C.A. Mota Soares Y1 - 2004 SN - 0-948749-95-4 U6 - http://dx.doi.org/10.4203/ccp.79.201 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative System for Earthquake Resistant Masonry Infill Walls T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11479 SP - 1 EP - 12 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Kubalski, Thomas T1 - Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11477 SP - 1 EP - 12 ER - TY - CHAP A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11440 SP - 1 EP - 13 ER - TY - CHAP A1 - Schmitt, Timo A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic Impact And Design Of Buried Pipelines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 N2 - Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters. Y1 - 2018 N1 - Paper No 10600 SP - 1 EP - 12 ER - TY - CHAP A1 - Milkova, Kristina A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10522 SP - 1 EP - 10 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Boesen, Niklas A1 - Gellert, Christoph T1 - Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 SP - 1 EP - 12 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER -