TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization T2 - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. Y1 - 2020 U6 - https://doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online VL - 12 SP - 589 EP - 603 PB - Springer CY - Wien ER - TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 N2 - This paper presents an approach for UAV propulsion system qualification and validation on the example of FH Aachen's 25 kg cargo UAV "PhoenAIX". Thrust and power consumption are the most important aspects of a propulsion system's layout. In the initial design phase, manufacturers' data has to be trusted, but the validation of components is an essential step in the design process. This process is presented in this paper. The vertical takeoff system is designed for efficient hover; therefore, performance under static conditions is paramount. Because an octo-copter layout with coaxial rotors is considered, the impact of this design choice is analyzed. Data on thrust, voltage stability, power consumption, rotational speed, and temperature development of motors and controllers are presented for different rotors. The fixed-wing propulsion system is designed for efficient cruise flight. At the same time, a certain static thrust has to be provided, as the aircraft needs to accelerate to cruise speed. As for the hover-system, data on different propellers is compared. The measurements were taken for static conditions, as well as for different inflow velocities, using the FH-Aachen's wind-tunnel. Y1 - 2020 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane N2 - This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4. Y1 - 2020 U6 - https://doi.org/10.25967/530170 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online PB - DGLR CY - Bonn ER - TY - CHAP A1 - Otten, D. A1 - Schmid, M. A1 - Weber, Tobias T1 - Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization T2 - Proceedings of SAMPE Europe Conference, Amiens , France Y1 - 2015 ER - TY - CHAP A1 - Weber, Tobias T1 - Manufacturing Process Simulation for Tooling Optimization: Reduction of Quality Issues During Autoclave Manufacturing of Composite Parts T2 - Proceedings of SAMPE Europe Conference 2015, Amiens, France Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Weber, Tobias A1 - Englhard, Markus A1 - Hailer, Benjamin A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling T2 - Proceedings of SAMPE Europe Conference, Amiens , France Y1 - 2015 SP - 1 EP - 10 ER - TY - CHAP A1 - Weber, Tobias A1 - Englhard, Markus A1 - Hailer, Benjamin A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling T2 - Proceedings of SAMPE Europe Conference 2019, Nantes, France Y1 - 2019 SP - 1 EP - 10 ER -