TY - RPRT A1 - Stölzle-Feix, Sonja A1 - Thomas, Ulrich A1 - Engelstädter, Max A1 - Goßmann, Matthias A1 - Linder, Peter A1 - Staat, Manfred A1 - Raman, Aravind Hariharan A1 - Jung, Alexander A1 - Fertig, Niels T1 - Plattformtechnologie für kardiale Sicherheitspharmakologie basierend auf teilsynthetischem Herzmuskelgewebe (FLEXcyte) : gemeinsamer FuE-Abschlussbericht aller Partner des Verbundprojektes : Projektlaufzeit: 01.10.2018 bis 30.09.2020 Y1 - 2021 U6 - http://dx.doi.org/10.2314/KXP:1813208581 N1 - Förderkennzeichen BMBF 02P18K020-021 Verbundnummer 01185221 PB - Nanion Technologies GmbH CY - München ER - TY - INPR A1 - Ringers, Christa A1 - Bialonski, Stephan A1 - Solovev, Anton A1 - Hansen, Jan N. A1 - Ege, Mert A1 - Friedrich, Benjamin M. A1 - Jurisch-Yaksi, Nathalie T1 - Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves T2 - bioRxiv N2 - Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping. Y1 - 2021 U6 - http://dx.doi.org/10.1101/2021.11.23.469646 N1 - Veröffentlicht in eLife 12:e77701 (https://doi.org/10.7554/eLife.77701). ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - http://dx.doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Göll, Fabian A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon JF - Medicine & Science in Sports & Exercise N2 - Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle–tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force–length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force–length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13% ± 10%, 105% ± 28%, and 54% ± 24%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32% ± 12%) and with greater pennation angles (31% ± 26%). A mean deficit in plantarflexion moment of 31% ± 10% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function. KW - Tendon Rupture KW - Stiffness KW - Simulation KW - Muscle Force KW - Muscle Fascicle Y1 - 2021 U6 - http://dx.doi.org/10.1249/MSS.0000000000002592 SN - 1530-0315 VL - 53 IS - 7 SP - 1356 EP - 1366 PB - American College of Sports Medicine CY - Philadelphia, Pa. ER - TY - JOUR A1 - Neumaier, Felix A1 - Kotliar, Konstantin A1 - Haeren, Roel Hubert Louis A1 - Temel, Yasin A1 - Lüke, Jan Niklas A1 - Seyam, Osama A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Schubert, Gerrit Alexander A1 - Schneider, Toni A1 - Albanna, Walid T1 - Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA) JF - Frontiers in Neurology Y1 - 2021 U6 - http://dx.doi.org/10.3389/fneur.2021.659890 VL - 12 SP - 1 EP - 11 PB - Frontiers ER - TY - JOUR A1 - Givanoudi, Stella A1 - Cornelis, Peter A1 - Rasschaert, Geertrui A1 - Wackers, Gideon A1 - Iken, Heiko A1 - Rolka, David A1 - Yongabi, Derick A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source JF - Sensors and Actuators B: Chemical Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.snb.2021.129484 SN - 0925-4005 IS - In Press, Journal Pre-proof SP - Article 129484 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Olderog, M. A1 - Mohr, P. A1 - Beging, Stefan A1 - Tsoumpas, C. A1 - Ziemons, Karl T1 - Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph T2 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) N2 - In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50%, while a change of the energy resolution in the absorber layer from 12% to 4.5% results in a reduction of 60%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm. Y1 - 2021 SN - 978-1-7281-7693-2 U6 - http://dx.doi.org/10.1109/NSS/MIC42677.2020.9507901 N1 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 31 Oct.-7 Nov. 2020, Boston, MA, USA PB - IEEE ER - TY - CHAP A1 - Kohl, Philipp A1 - Schmidts, Oliver A1 - Klöser, Lars A1 - Werth, Henri A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - STAMP 4 NLP – an agile framework for rapid quality-driven NLP applications development T2 - Quality of Information and Communications Technology. QUATIC 2021 N2 - The progress in natural language processing (NLP) research over the last years, offers novel business opportunities for companies, as automated user interaction or improved data analysis. Building sophisticated NLP applications requires dealing with modern machine learning (ML) technologies, which impedes enterprises from establishing successful NLP projects. Our experience in applied NLP research projects shows that the continuous integration of research prototypes in production-like environments with quality assurance builds trust in the software and shows convenience and usefulness regarding the business goal. We introduce STAMP 4 NLP as an iterative and incremental process model for developing NLP applications. With STAMP 4 NLP, we merge software engineering principles with best practices from data science. Instantiating our process model allows efficiently creating prototypes by utilizing templates, conventions, and implementations, enabling developers and data scientists to focus on the business goals. Due to our iterative-incremental approach, businesses can deploy an enhanced version of the prototype to their software environment after every iteration, maximizing potential business value and trust early and avoiding the cost of successful yet never deployed experiments. KW - Machine learning KW - Process model KW - Natural language processing Y1 - 2021 SN - 978-3-030-85346-4 SN - 978-3-030-85347-1 U6 - http://dx.doi.org/10.1007/978-3-030-85347-1_12 N1 - International Conference on the Quality of Information and Communications Technology, QUATIC 2021, 8-11 September, Algarve, Portugal SP - 156 EP - 166 PB - Springer CY - Cham ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020 JF - physica status solidi (a) applications and materials science N2 - The treatment method to deactivate viable microorganisms from objects or products is termed sterilization. There are multiple forms of sterilization, each intended to be applied for a specific target, which depends on—but not limited to—the thermal, physical, and chemical stability of that target. Herein, an overview on the currently used sterilization processes in the global market is provided. Different sterilization techniques are grouped under a category that describes the method of treatment: radiation (gamma, electron beam, X-ray, and ultraviolet), thermal (dry and moist heat), and chemical (ethylene oxide, ozone, chlorine dioxide, and hydrogen peroxide). For each sterilization process, the typical process parameters as defined by regulations and the mode of antimicrobial activity are summarized. Finally, the recommended microorganisms that are used as biological indicators to validate sterilization processes in accordance with the rules that are established by various regulatory agencies are summarized. KW - bioburdens KW - sterility tests KW - sterilization efficacy KW - sterilization methods KW - validation methods Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000732 SN - 1862-6319 N1 - Corresponding author: Michael J. Schöning VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER -