TY - JOUR A1 - Emons, H. A1 - Baade, A. A1 - Schöning, Michael Josef T1 - Voltammetric determination of heavy metals in microvolumes of rain water JF - Electroanalysis. 12 (2000), H. 15 Y1 - 2000 SN - 1040-0397 SP - 1171 EP - 1176 ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Lutfor, Afzalunnessa B. A1 - Razzaque, Mohammed S. T1 - Vitamin D and the Host-Gut Microbiome: A Brief Overview JF - Acta Histochemica et Cytochemica N2 - There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords “vitamin D,” “intestines,” “gut microflora,” “bowel inflammation”. Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression. Y1 - 2020 U6 - https://doi.org/10.1267/ahc.20011 SN - 1347-5800 VL - 53 IS - 3 SP - 33 EP - 42 PB - Japan Society of Histochemistry and Cytochemistry CY - Osaka ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Razzaque, Mohammed S. T1 - Vitamin D and Phosphate Interactions in Health and Disease T2 - Phosphate Metabolism N2 - Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease. KW - Vitamin D KW - PTH KW - Phosphate KW - FGF23 KW - Klotho Y1 - 2022 SN - 978-3-030-91621-3 U6 - https://doi.org/10.1007/978-3-030-91623-7_5 SP - 37 EP - 46 PB - Springer CY - Cham ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hirayama, Yuji A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of enzymatic reaction in a microfluidic channel using chemical imaging sensor JF - Electrochimica acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) SP - Publ. online PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Bing, Yu A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor JF - Procedia Engineering N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image. Y1 - 2015 U6 - https://doi.org/10.1016/j.proeng.2015.08.806 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 936 EP - 939 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Digel, Ilya A1 - Zhubanova, Azhar Ahmetovna A1 - Akimbekov, Nuraly S. T1 - Visual Virology Y1 - 2012 SN - 978-601-247-298-1 N1 - Text kasachisch, russisch, englisch CY - Almaty ER - TY - JOUR A1 - Ullrich, Sebastian A1 - Grottke, Oliver A1 - Rossaint, Rolf A1 - Staat, Manfred A1 - Deserno, Thomas M. A1 - Kuhlen, Torsten T1 - Virtual Needle Simulation with Haptics for Regional Anaesthesia Y1 - 2010 N1 - IEEE Virtual Reality 2010, Workshop on Medical Virtual Environments, Waltham, MA, USA, March 21, 2010 SP - 1 EP - 3 ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Virgin passive colon biomechanics and a literature review of active contraction constitutive models JF - Biomechanics N2 - The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. KW - virgin passive KW - strain energy function KW - smooth muscle contraction KW - viscoelasticity KW - damage Y1 - 2022 U6 - https://doi.org/10.3390/biomechanics2020013 SN - 2673-7078 VL - 2 IS - 2 SP - 138 EP - 157 PB - MDPI CY - Basel ER - TY - CHAP A1 - Blum, Yannik A1 - Albanna, Walid A1 - Benninghaus, Anne A1 - Kotliar, Konstantin ED - Staat, Manfred ED - Erni, Daniel T1 - Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]–[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]–[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients. Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 38 EP - 39 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Conzen, Catharina A1 - Albanna, Walid A1 - Weiss, Miriam A1 - Kürten, David A1 - Vilser, Walthard A1 - Kotliar, Konstantin A1 - Zäske, Charlotte A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes JF - Translational Stroke Research N2 - Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5–14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome. Y1 - 2018 U6 - https://doi.org/10.1007/s12975-017-0585-8 SN - 1868-601X IS - 9 SP - 284 EP - 293 PB - Springer Nature CY - Cham ER -