TY - JOUR A1 - Bung, Daniel B. T1 - Developing flow in skimming flow regime on embankment stepped spillways JF - Journal of hydraulic research Y1 - 2011 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 49 IS - Iss. 5 SP - 639 EP - 648 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bung, Daniel B. T1 - Fließcharakteristik und Sauerstoffeintrag bei selbstbelüfteten Gerinneströmungen auf Kaskaden mit gemäßigter Neigung JF - Österreichische Wasser- und Abfallwirtschaft Y1 - 2011 SN - 1613-7566 (E-Journal); 0945-358X (Print) VL - Vol. 63 IS - Iss. 3-4 SP - 76 EP - 81 PB - Springer CY - Berlin ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Initial stage of two-dimensional dam-break waves: laboratory versus VOF JF - Journal of hydraulic research N2 - Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found. KW - VOF KW - PIV KW - physical model KW - numerical model KW - drag force KW - dam-break Y1 - 2012 U6 - http://dx.doi.org/10.1080/00221686.2011.639981 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - 50 IS - 1 SP - 89 EP - 97 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bung, Daniel B. T1 - Non-intrusive detection of air–water surface roughness in self-aerated chute flows JF - Journal of hydraulic research Y1 - 2013 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 51 IS - Iss. 3 SP - 322 EP - 329 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Leandro, J. A1 - Bung, Daniel B. A1 - Carvalho, R. T1 - Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods JF - Experiments in fluids Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00348-014-1732-6 SN - 0723-4864 (Print) ; 1432-1114 (Online) IS - 55 SP - Art. 1732 PB - Springer Nature CY - Heidelberg ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Numerische Strömungssimulationen von Fließgewässern : Praxisanwendungen und zukünftige Entwicklungen JF - Korrespondenz Wasserwirtschaft : KW Y1 - 2015 SN - 1616-430X VL - 8 IS - H. 3 SP - 177 EP - 182 PB - Gesellschaft zur Förderung der Abwassertechnik CY - Hennef ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Stability and scour development of bed material on crossbar block ramps JF - International journal of sediment research N2 - Block ramps are ecologically oriented drop structures with adequate energy dissipation and partially moderate flow velocities. A special case is given with crossbar block ramps, where the upstream and downstream level difference is reduced by a series of basins. To prevent the total structure from failing, the stability of single boulders within the crossbars and the bed material in between must be guaranteed. The present paper addresses the stability of bed material and scour development for various flow regimes. Any bed material erosion may affect the stability of the crossbar boulders, which in turn can result in major damages of the ramp. Therefore new design approaches are developed to choose an appropriate bed material size and to avoid failures of crossbar block ramp structures. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.ijsrc.2014.12.003 SN - 1001-6279 VL - 30 IS - 4 SP - 344 EP - 350 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow JF - Environmental Modelling and Software N2 - Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.envsoft.2016.04.030 SN - 1364-8152 (electronic) VL - 82 SP - 218 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows: Instabilities growth, entrapped air and influence on the self-aeration onset JF - International Journal of Multiphase Flow N2 - Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air–water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.012 SN - 0301-9322 VL - 84 SP - 66 EP - 74 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bung, Daniel B. A1 - Valero, Daniel T1 - Optical flow estimation in aerated flows JF - Journal of Hydraulic Research N2 - Optical flow estimation is known from Computer Vision where it is used to determine obstacle movements through a sequence of images following an assumption of brightness conservation. This paper presents the first study on application of the optical flow method to aerated stepped spillway flows. For this purpose, the flow is captured with a high-speed camera and illuminated with a synchronized LED light source. The flow velocities, obtained using a basic Horn–Schunck method for estimation of the optical flow coupled with an image pyramid multi-resolution approach for image filtering, compare well with data from intrusive conductivity probe measurements. Application of the Horn–Schunck method yields densely populated flow field data sets with velocity information for every pixel. It is found that the image pyramid approach has the most significant effect on the accuracy compared to other image processing techniques. However, the final results show some dependency on the pixel intensity distribution, with better accuracy found for grey values between 100 and 150. Y1 - 2016 U6 - http://dx.doi.org/10.1080/00221686.2016.1173600 VL - 54 IS - 5 SP - 575 EP - 580 PB - Taylor & Francis CY - London ER -