TY - JOUR A1 - Rausch, Valentin A1 - Kahmann, Stephanie Lucina A1 - Baltschun, Christoph A1 - Staat, Manfred A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study JF - The Journal of Hand Surgery N2 - Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.jhsa.2020.01.006 SN - 0363-5023 VL - 45 IS - 8 SP - 776.e1 EP - 776.e9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abel, Alexander A1 - Kahmann, Stephanie Lucina A1 - Mellon, Stephen A1 - Staat, Manfred A1 - Jung, Alexander T1 - An open-source tool for the validation of finite element models using three-dimensional full-field measurements JF - Medical Engineering & Physics N2 - Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.medengphy.2019.10.015 SN - 1350-4533 VL - 77 SP - 125 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Linder, Peter A1 - Beckler, Matthias A1 - Doerr, Leo A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Staat, Manfred A1 - Gossmann, Matthias T1 - A new in vitro tool to investigate cardiac contractility under physiological mechanical conditions JF - Journal of Pharmacological and Toxicological Methods Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.vascn.2019.05.162 SN - 1056-8719 VL - 99 IS - Article number 106595 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schieren, Mark A1 - Kleinschmidt, Joris A1 - Schmutz, Axel A1 - Loop, Torsten A1 - Gatzweiler, Karl-Heinz A1 - Staat, Manfred A1 - Wappler, Frank A1 - Defosse, Jerome T1 - Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study JF - Anaesthesia Y1 - 2019 SN - 1365-2044 U6 - http://dx.doi.org/10.1111/anae.14815 N1 - Die Anhänge "Table S1 (Impact of sex and level of training on dental force. Results presented as median (IQR [range]) and n (%))" und "Appendix S1 (Measurement technique.)" stehen unter "Supporting Information" zum Download bereit. VL - 74 IS - 12 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse JF - Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization Y1 - 2019 U6 - http://dx.doi.org/10.1080/21681163.2019.1670095 SN - 2168-1171 PB - Taylor & Francis CY - London ER - TY - BOOK A1 - Staat, Manfred A1 - Heitzer, Michael T1 - Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems. Y1 - 2003 SN - 3-00-010001-6 N1 - NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M. PB - John von Neumann Institute for Computing (NIC) CY - Jülich ER - TY - JOUR A1 - Leschinger, Tim A1 - Besch, Katharina A1 - Aydin, Cansu A1 - Staat, Manfred A1 - Scaal, Martin A1 - Müller, Lars Peter A1 - Wegmann, Kilian T1 - Irreparable rotator cuff tears: a biomechanical comparison of superior capsuloligamentous complex reconstruction techniques and an interposition graft technique JF - The Orthopaedic Journal of Sports Medicine Y1 - 2019 U6 - http://dx.doi.org/10.1177/2325967119864590 VL - 7 IS - 8 SP - 1 EP - 5 ER - TY - CHAP A1 - Raman, Aravind Hariharan A1 - Jung, Alexander A1 - Horváth, András A1 - Becker, Nadine A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich). Y1 - 2019 SN - 978-3-940402-22-6 U6 - http://dx.doi.org/10.17185/duepublico/48750 SP - 10 EP - 11 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Hunker, Jan A1 - Jung, Alexander A1 - Goßmann, Matthias A1 - Linder, Peter A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool. Y1 - 2019 SN - 978-3-940402-22-6 U6 - http://dx.doi.org/10.17185/duepublico/48750 SP - 7 EP - 8 PB - Universität Duisburg-Essen CY - Duisburg ER -